• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

‘Wet’ vs. Polymer Aluminium Capacitors

12.1.2017

Snubber Capacitor Selection for SiC-Based Switching Converters

17.5.2022

Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

17.5.2022

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

16.5.2022

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

16.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

‘Wet’ vs. Polymer Aluminium Capacitors

12.1.2017
Reading Time: 4 mins read
0 0
0
SHARES
125
VIEWS

source: AVNET/ABACUS article,

written by, Adam Chidley

RelatedPosts

Snubber Capacitor Selection for SiC-Based Switching Converters

Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

Aluminium electrolytic and polymer wound aluminium electrolytic capacitors may seem similar at first glance, because their construction and appearance are very similar. However, the technologies offer very different performance characteristics.

Aluminium electrolytic capacitors are often described as ‘wet’ because the electrolyte is liquid. A typical device would be two pieces of aluminium foil, one coated in an insulating oxide layer, rolled tightly together, with a paper spacer soaked in the electrolyte between the two pieces of foil. The whole assembly is encased in a watertight can to prevent leaking.

The aluminium oxide layer on the surface of the anode foil can be manufactured very thinly, and this allows a relatively high capacitance in a small volume. These devices are also able to withstand high voltages, up to 50V even for surface mount parts, and are economical, because no expensive or rare materials are required for construction.

Although the technology isn’t new, wet electrolytic capacitors are still popular in power electronics for decoupling (especially bulk decoupling) and buffering applications because they are the cheapest option for high capacitance and voltage and can withstand low energy transients. Wet electrolytics come in a wide range of capacitance values, roughly between 10 and 7500µF, with many product ranges available from a multitude of manufacturers that specialise in aspects of performance, such as lower equivalent series resistance, high voltage, high ripple etc.

Wet aluminium capacitors’ major Achilles heel is their limited lifetime. The evaporation of the liquid electrolyte is the main cause of failure, which is exacerbated at elevated operating temperatures. The well-known rule of thumb is that the operating life of a wet electrolytic doubles if the temperature can be reduced by 10°C. Exposure to ripple currents also drastically reduces the lifetime, mainly because the temperature inside the device is increased as a result.

In extreme cases, the application of overvoltage can cause a wet electrolytic to explode, although modern devices have safety vents to prevent gases building up inside the can. Another downside is the devices’ increase in ESR when exposed to low temperatures (below 0°C).

Replacing the wet electrolyte led to the development of polymer aluminium wound capacitors in the 1990s. Construction is similar to wet electrolytic capacitors, with two layers of aluminium foil and a layer of aluminium oxide on the anode, but the spacer between them contains a solid conductive polymer material, which improves performance in a number of areas.

The equivalent series resistance of polymer aluminium capacitors is very low compared to wet types and it’s more stable over a wider range of temperatures and voltages. As an example, ESR is down to 5mΩ for some devices in the Panasonic OS-CON range. This has the knock on effect of better frequency characteristics and resistance to ripple current, compared to wet types, making them ideal for noise reduction over a wide range of frequencies. Furthermore, because the electrolyte isn’t liquid, it doesn’t evaporate, so their lifetimes are improved too.

In addition they offer high capacitance values, though not quite as high as their wet cousins, and can withstand high voltages. However, this performance increase does carry a price premium. Polymer aluminium wound capacitors are often used for decoupling, because of their good frequency characteristics, or as smoothing capacitors in power supplies, due to their ripple capability.

To illustrate, let’s take a closer look at some example devices. A typical 47µF wet aluminium capacitor from the Panasonic FC-V series has a rated voltage of 6.3VDC and the height is 5.4mm with a 5mm diameter. A polymer OS-CON device from the SVPA series with the same capacitance, rated voltage and diameter is slightly higher at 5.9mm. The wet device will last 1000 hours at 105°C, while the polymer device will last 2000 hours under the same conditions. The wet device has an ESR of 1.80Ω and can withstand a ripple current of 95mA (rms), while the polymer device’s is 30mΩ – a sixth of that of the wet device – and can withstand an impressive 1970mA (rms) ripple current. However, the polymer device suffers on DC leakage current; its leakage is 300µA after 2 minutes. The wet device offers leakage current of 3µA at rated voltage after the same period.

As another example, let’s consider a 680µF device from the same Panasonic FC-V series of wet aluminium capacitors. It has a rated voltage of 16VDC, whereas a similar device from the SVPA series of OS-CON polymer wound aluminium capacitors is rated at 4VDC. Both devices are 10mm diameter, but the polymer has a height of 7.9mm compared to 10.2mm for the wet device. The polymer device wins on ripple current (4130mA (rms) compared to 670mA (rms)), ESR (20mΩ compared to 160mΩ) and lifetime (2000 hours compared to 1000 hours at 105°C). However, the wet device retains its lead in leakage current performance, at only 109µA compared to the polymer capacitor’s 544µA after 2 minutes.

In summary, though the devices look similar, the different electrolyte affects ESR, lifetime, ripple and leakage current, and most of the capacitor’s other properties too. Avnet Abacus supplies electrolytic capacitors from a range of manufacturers including KEMET, NIC, Nichicon, Panasonic, Rubycon, TDK (EPCOS), Vishay and Yageo. If you need help choosing between wet aluminium electrolytic and polymer wound aluminium electrolytic capacitors, contact one of our regional Product Specialists.

featured image source: Panasonic

 

 

Related Posts

Applications e-Blog

Snubber Capacitor Selection for SiC-Based Switching Converters

17.5.2022
6
Aerospace & Defence

Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

17.5.2022
5
Capacitors

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

16.5.2022
6

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.