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AF acceleration factor HTS high temperature storage

BME base metal electrode NT new technology

COTS commercial off the shelf PME precious metal electrode

DCL direct current leakage PTC polymer tantalum capacitors

ESR equivalent series resistance S&Q screening and qualification

HALT highly accelerated life testing TTF Time to failure

WTC wet tantalum capacitors
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Outline
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 General comments on insertion of COTS in hi-rel

systems.

 Rating-related failures.

 Degradation-related failures.

▪ Catastrophic and parametric failures in tantalum capacitors 

and MLCCs.

▪ ESR in polymer tantalum capacitors.

▪ Degradation of leakage currents in tantalum capacitors.

 Conclusion.
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Two Approaches for COTS Insertion
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✓ “COTS as NT” approach requires understanding of new 

degradation mechanisms, specific reliability issues, and 

development of adequate S&Q procedures.

✓ The consistency of COTS quality still remains a problem.

1. Reliability of COTS is inferior to MIL parts, and to qualify for 

space one need to run extensive testing per the existing 

requirements.
▪ The major concern is cost and time rather than technical issues.

2. COTS are NT devices and need analysis of new degradation 

processes and failure mechanisms.

▪ Existing procedures for S&Q have to be evaluated and adjusted.

▪ New mechanisms might require new testing techniques.
o HTS does not affect MnO2 caps, but causes degradation of PTC.

o Cracks in packages affect degradation of ESR in PTCs, but can be 

considered mostly as cosmetic defects for MnO2 caps.

o Weibull grading testing works with MnO2 caps, but does not with PTC.



Rating-related Parametric Failures
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 Failures during environmental testing might be due to 

the marketing pressure that forces manufacturers to 

squeeze performance of COTS components thus leaving 

insufficient margin between the rated and actual 

characteristics.

 Examples:

▪ Ripple currents.

▪ Temperature stability in wets.

▪ Leakage currents in wets.

▪ ESR in chip tantalum and polymer 

capacitors.
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Catastrophic and Parametric Failures in 

MnO2 Tantalum Capacitors
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Variations of leakage currents with time for two lots of 6.8 mF 35 V 

capacitors from the same Mfr. during 100hr HALT

✓ Type I (catastrophic failures) is more often observed for MIL and 

Type II (parametric failures) for commercial capacitors.
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Failures in BME and PME Capacitors
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✓ Cracking in BMEs does not affect IR measured at 125 °C but facilitates 

degradation and parametric failures.

✓ Degradation in PMEs with cracks results often in instantaneous failures.

✓ Contrary to PMEs, degradation in BMEs occurs gradually and energy 

generated at the defect can be balanced by heat dissipation. “Leaky” 

BME capacitors often degrade, but do not fail catastrophically, whereas 

PME capacitors with prevailing avalanche-like breakdown might not 

degrade, but fail short circuit.
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ESR Degradation in Polymer Ta Caps
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✓ Ea  0.72 eV, which is close to results for 10 V capacitors.

✓ Simulations allow for the end-of-life predictions.

✓ More complex models might be necessary to accommodate 

for degradation inception times.

Approximations:                                    
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A History Case
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✓ The risk of failure during the mission should be assessed.

✓ A model for leakage currents degradation should be 

developed to evaluate the probability of parametric failures. 

 Background

▪ Commercial 6.8 mF 25 V Ta caps that were screened and 

qualified to MIL-PRF-55365.

▪ Parts successfully tested in voltage regulator units.

▪ Operating conditions:  9 V at 45 °C.

 Problem

▪ Per the project request, six capacitors have been subjected 

to life testing at 125 °C and 16.7 V.  

▪ Two parametric failures were observed.



Degradation of Leakage Currents
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Linear approximation of I-t characteristics

✓ Linear approximation is applicable for initial stages of 

degradation. Degradation rate a = f(T, V).

✓ Degradation rate increases with voltage exponentially, B 12.
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Technique, Cont’d
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▪ Capacitors: 6.8 mF 25 V and 6.8 mF 35 V.

▪ Monitored HALT: 
o Temperature: 85 ºC to 145 ºC in 20 ºC increments; 

o Voltage: 15 V to 35 V in 10 V increments; 

o step duration 30 hr.

▪ Degradation rate, a(T, V), was calculates for each sample.

▪ Distributions of a at different T and V were approximated with a 

general log-linear model:

▪ Acceleration constant B and the activation energy: 

B = a2×VR,      Ea = -a1/k.

▪ Time to failure was calculated as
a

0II
TTF crit 
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Distributions of Degradation Rates for 

35V and 25V Capacitors

12
PCND September 2017

Degradation rate,  6.8uF 25V at 25V
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✓ Unimodal distributions for 35 V capacitors.

✓ Bimodal distributions for 25 V capacitors.

✓ Slow- and fast-degrading subgroups in 25 V capacitors 

have been analyzed separately. 



Parameters of the Model and Mechanism
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6.8 mF 25V 6.8 mF 35V

Low-rate 

subgroup

High-rate 

subgroup
All data

B 9.25 5.45 10.3

Ea, eV 1.66 1.42 1.65

✓ Similar constants for the slow-degrading subgroup of 25 V and 35 V 

capacitors, Bavr = 9.8 ±0.5 and Ea_avr = 1.65 eV. 

✓ Ea = Emigr + Eleak .  At Eleak ~ 0.5 eV, Emigr ~ 1.1 eV, which is typical 

for oxygen vacancies (Ea, Emigr and Eleak are activation energies of the degradation rate, 

migration of Vo
++ and of leakage current respectively)

✓ DCL degradation is reversible that is in agreement with the model.
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Distributions of Times to Failure
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Simulation of TTFs for 6.8uF 25V capacitors
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✓ Calculated and experimental data are close thus validating the 

model.  

✓ Model allows for conservative estimations.

✓ The slope of distributions,   2, indicates wear-out  failures.

✓ The probability of failure at use conditions is negligibly small.



Conclusion
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 Two reasons for parametric failures in COTS: 

(i) due to insufficient margin in specified parameters 

and 

(ii) due to degradation processes.

 Degradation is typically caused by wear-out processes 

and can be modeled relatively easily.

 Determining physical mechanisms of degradation is 

more challenging, but is important to justify the models.
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