MLCC Capacitors Availability First Aid
Tantalum/NbO to MLCC Class II Replacement Guidelines
April 2018

Tomas Zednicek Ph.D.
EPCI president

EPCI | Bringing Passive Professionals Together

www.passive-components.eu
MLCC Supply Remains Tight

April 18

MLCC Shortages and Why They Might Last Longer than Expected
June 2017

MLCC shortages are creating challenges in multiple end markets in 2018

March 2018

MLCC prices to rise 40-50% in 2Q18
March 18

tantalum capacitors are getting tight as well, but still it can offer better leadtimes depending to case sizes and Cap Volt type

Paumanok note on Tantalum Capacitors lead times continued to stretch March 18
Case Sizes & Pad Dimensions

- basic PCB pad footprints 0603, 0805, 1206, 1210 are compatible with minor tolerance deviations
- case size height may by a type / CV specific

Table 1. MLCC versus case size comparison, source: EPCI, manufacturers datasheets

<table>
<thead>
<tr>
<th>MLCC Case Size</th>
<th>Thickness [mm] max</th>
<th>Tantalum Case Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>EIA</td>
<td></td>
</tr>
<tr>
<td>1608</td>
<td>[0603]</td>
<td>0.85</td>
</tr>
<tr>
<td>2012</td>
<td>[0805]</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3216</td>
<td>[1206]</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3225</td>
<td>[1210]</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MLCCs are good in making parts physically smaller. Tantalums answer better the needs for thin and flat designs.

For example, if the task is to get maximum capacitance within 1.0mm max height, tantalum capacitors can make easier larger thin part with high capacitance in a mechanically strong body, unlike the MLCCs that could lead to a fragile design with risk of cracking.

In reality, tantalum capacitors are available in more thickness and low profile case options as seen in Table 1. On the other hand, MLCC technology can go to much smaller dimensions and make smallest capacitors available.

* letter code may be manufacturer specific

Tantalum/NbO to MLCC Class II Replacement Guidelines
• In a "stable" market environment, technology based cost for 1206 case MLCC class II and Tantalum capacitors can be very close (depending on capacitance and voltage value).

• The 1206 case size is a cost down sweet-spot case size for a standard tantalum capacitors and it can be in price competitive position to MLCC class II.

• Tantalum smaller case sizes 0805 and 0603 may be more expensive than 1206.

• MLCC smaller case sizes 0805 and 0603 may be cheaper than 1206.

• 0402 and 0201 tantalum case sizes are existing as well as larger case MLCCs, however, these are more niche products our of high volume and mass volume pricing.

• The actual cost vs performance value may be application specific due to a different parameters stability and features.
MLCC vs Tantalum

Tantalum/NbO advantages
- no piezo noise
- stable capacitance with voltage BIAS and temperature
- high mechanical strength, robustness and vibration resistance

Common strong points
- lead-free standard design and reflow compatibility
- ROHS friendly standard design
- wide temperature range (-55/+125°C basic range)
- relatively very good basic reliability
- high capacitance in small dimensions

MLCC class II advantages
- low ESR
- high ripple load
- non-polarized
- low DCL

MLCC class II issues
- capacitance dependency to AC/DC voltage and temp
- piezo noise
- mechanical robustness

Ta/NbO issues
- high current surge sensitivity
- derating rules (depending on technology and application different rules may apply)
- conflict-free tantalum source (addressed by leading mfgs)

Tantalum/NbO to MLCC Class II Replacement Guidelines
Temperature Dependency

Tantalum/NbO advantages and MLCC Issues

- stable capacitance with DC/AC voltage BIAS and temperature

Figure 3. Capacitance versus temperature behavior by different dielectric types, chart credit: Kemet

Figure 4. Cap versus DC Bias behavior by different dielectric types, chart credit: Murata

Figure 5. Cap versus AC voltage behavior by different dielectric types, chart credit: Murata

Tantalum/NbO to MLCC Class II Replacement Guidelines
Key Features – Details II.

IMP, ESR vs Frequency

MLCC advantages and Tantalum General Issues

- Low ESR and High ripple load (at high “switching” frequency)

Nevertheless, **Watch for Working Frequency!**

MLCC’s ESR may be even higher than tantalum at low frequencies (sub 1kHz)

Ripple Current

This is then reflected into the capacitors’ power dissipation and ripple current load capability

Fig 7. Capacitor smoothing function in a rectifier circuit.

Figure 6. ESR and IMP versus freq. behavior by different dielectric types, chart credit: Wikimedia
Summary & Recommendations

Tantalum to MLCC replacement possible:

A. AT LOW RISK:

all applications, where very low ESR and high ripple current load is not a prime requirement, such as circuit functions - coupling/decoupling including audio circuits, selected filtering, timing etc.

Checklist:
- low ESR requirements and high ripple current load
- DCL leakage level in case of battery operated circuit

Tantalum or NbO capacitors in these applications are representing even more stable, reliable solution that may be even superior compare to the original MLCC capacitor.

B. MORE DETAILED EVALUATION NEEDED:

smoothing applications typically at DC/DC converters with high power load requirements.

Checklist:
- smoothing frequency required (not a general specification table parameter)
- at low frequencies ESR of MLCC capacitors may be even higher than tantalum. Use of tantalum capacitors is thus possible with even improved performance.
- beware of the required low ESR and ripple load specification values as the critical characteristics as the low ESR may be the main limiting factor for the circuit operation.
- return to b) and check the low ESR / ripple load requirements in the entire end device operating temperature range
- consider appropriate derating rules for tantalum, NbO and polymer capacitors. Follow manufacturers recommendations Kemet [18], AVX [19], Vishay [20]

related technical papers on capacitors selection for DC/DC converters can be found in [13] and detailed technical paper from AVX on DC/DC capacitor benchmarking [14].
The Final Word

Situation on the market is rather dynamic, thus it can not be guaranteed that tantalum or NbO capacitor alternatives will be available with shorter leadtime than MLCC, nevertheless the main purpose of these guidelines is to provide a basic info on possible replacement considerations to be flexible with some more choices on mind to avoid line stops.

References

[1] D.Zogbi, Paumanok, TTI Market Eye, March 2018: "MLCC shortages are creating challenges in multiple end markets in 2018" link here
[9] Murata Capacitor Room: "The voltage characteristics of electrostatic capacitance", link here
[14] AVX Technical paper: "DC/DC Converter Output Capacitor Benchmark", link here
[15] DigiTime news, March 18,"MLCC prices to rise 40-50% in 2Q18", link here
[16] D.Zogbi, Paumanok, March 17,"Paumanok note on Tantalum Capacitors lead times continued to stretch", link here
[17] D.Zogbi, Paumanok,Linked In note, April 18,"MLCC Supply Remains Tight", link here
[19] AVX Technical paper:"Voltage Derating Rules for Solid Tantalum and Niobium Capacitors", link here
[20] Vishay Frequently Asked Questions:" Why are voltage and temperature derating needed for tantalum capacitors?", link here

This presentation can be shared under a Creative Commons Attribution-ShareAlike 4.0 International License

© Copyright European Passive Component Institute 2018
www.passive-components.eu
Your Passive Components Information Portal

- One of few resources dedicated solely to passive components
- Passive components global daily News with sorting options by component applications, type, popularity etc.
- White technical papers, tutorials, guidelines
- Advertisement options incl. sponsored prime position articles

About us

European Passive Industry Database
eSymposium
ePassiveBook

NEW!

- Capacitor and Resistor Mounting Guidelines

Get Direct Access to Passive Components Professionals

April 2018 web profile:
Active visitors: ~6k
Google search display: 92k
Google search clicks: 4.5k
Newsletter: 152 subscribers
Top countries: USA (27.7%), India (8%), UK (7%), Germany (6%), France (6%)

Visitor profile:

- Europe: 35%
- Americas: 33%
- Asia: 28%

More details about visitor profiles and advertisement options:
https://passive-components.eu/advertisement/