

Recent developments in microwave filters based on GaN/Si SAW resonators, operating at frequencies above 5 GHz

<u>Alina-Cristina BUNEA</u>¹, Dan NECULOIU¹, Adrian DINESCU¹, Leo Arij FARHAT² ¹National Institute for R&D in Microtechnologies – IMT Bucharest ²ESTEC, ESA <u>alina.bunea@imt.ro</u>

- Design of SAW-BPF
- □Fabrication and characterization
- **UThermal stability analysis**
- **Conclusions & Future developments**

- Design of SAW-BPF
- **Generation and characterization**
- **OThermal stability analysis**
- **Conclusions & Future developments**

- *"Microwave filters based on GaN/Si SAW resonators, operating at frequencies above 5 GHz"* (ESA project No. 40000115202/15/NL/CBi)
- Main project objectives: design, fabrication and characterization of monolithic integrated band pass filters processed on GaN/Si, operating at >5 GHz
 - IDTs with digit/interdigit widths below 200 nm
 - use of multiple SAW-Rs integrated monolithically with printed inductors (connected in series or in parallel)

Design of SAW-BPF

Generation and characterization

OThermal stability analysis

Conclusions & Future developments

SAW Bandpass Filters:

- a) Delay line type filters: high propagation losses
- b) Longitudinally-Coupled Resonator filter: difficult to implement in CoPlanar Waveguide topology
- c) Impedance Element Filters (ladder filters): performances limited by the SAW resonators parameters

Impedance Element Filter in PI topology

Selected filter configuration using Impedance Element Filter approach:

PI type configuration

The SAW-R components were selected for a resonance frequency around 5.5 GHz, corresponding to digit/interdigit widths of 200 nm.

$$f_{s,SAW_H} = f_0 = f_{p,SAW_V}$$

$$\mathbf{f}_{\text{p,SAW}_{H}} = \mathbf{f}_{c2} > \mathbf{f}_{0} \quad \mathbf{f}_{\text{s,SAW}_{V}} = \mathbf{f}_{c1} < \mathbf{f}_{0}$$

Effect of a series inductor $L_S << L_m$: same f_p , but:

Effect of a parallel inductor $L_P \ll L_m$ *: same* f_s *but:*

(© 2018 IEEE. D. Neculoiu et al., IEEE ACCESS, Vol. 6, DOI: 10.1109/ACCESS.2018.2867456)

Band Pass Filter in PI configuration

□ very compact of only 3x0.8 mm²

 $\hfill\square$ the series printed inductors have a width of 20 μm

 input/output CPW lines have the gap-signal-gap widths of 50-100-50 µm, for a characteristic impedance of ~50Ω

The circuit layout of the BPF in PI configuration

Co-simulation approach for filter design

Equivalent circuit parameters for the vertical (V) and the horizontal (H) SAW-R

Simulation results for the PI configuration BPF

Design of SAW-BPF

□Fabrication and characterization

OThermal stability analysis

Conclusions & Future developments

Fabrication of SAW-Rs operating > 5 GHz

- SAW-R on GaN/Si for frequencies beyond 5 GHz
 - IDTs with digit/interdigit widths below 300 nm
 - nanolithographic patterning of the IDTs
 - writing field limited to a maximum of 100x100 μm^2 to avoid the negative charging and stitching effects
- e-beam lithography
 - maskless lithography technique; dedicated EBL machine Raith e-Line; electron resist PMMA 950k A4
- metal layers deposited using a highly directional e-beam evaporation equipment (Temescal FC 2000)
 - favors the lift-off process -> neat lines without side walls

Digit width = 130 nm

Digit width = 150 nm

Test structures

Thermal stability analysis between 20°C – 150°C

	DL = 0.2 mm		DL = 0	.7 mm	DL = 1.2 mm	
Pitch	fres @ 20°C	TCF [ppm/°C]	fres @ 20°C	TCF [ppm/°C]	fres @ 20°C	TCF [ppm/°C]
	[GHz]		[GHz]		[GHz]	
0.4 µm	5.4485	NA	5.4585	-43.72	5.4565	-43.25
0.3 µm	7.0285	-41.66	7.0265	-40.47	7.0255	-39.88
0.26 µm	7.9865	-43.23	7.9895	-42.7	NA	NA

(© 2017 IEEE. Reprinted, with permission, from A. C. Bunea et al., IEEE APMC 2017)

Measurement results for the PI-type filter

Design of SAW-BPF

Generation and characterization

UThermal stability analysis

Conclusions & Future developments

Measurement setup for thermal analysis

In-house developed on-wafer measurement setup used to record S parameter measurements at different temperatures

Thermal stability analysis -150...+150°C

- General shape of the frequency response is preserved
- Filter selectivity becomes worse with the temperature increase

- Design of SAW-BPF
- **Generation and characterization**
- **OThermal stability analysis**

Conclusions & Future developments

Results vs. SotA

BPF	Results		SAW-BP	[1] Y. Fan et. al., <i>"Surface</i>					
Parameter		[1]	[2]	[3]	[4]	acoustic waves in semi- insulating Fe-doped GaN			
Insertion losses	10.3 dB	25.5 dB/ 24.4 dB	14 dB	27 dB/ 35 dB	33 dB	films grown by hydride vapor phase epitaxy", Applied Physics			
Return loss	9.2 dB	N.A.	N.A.	N.A.	0.4 dB	[4] A Muller, et al. "SAW devices manufactured on			
Out of band rejection	20 dB	~35 dB	15 dB	23 dB/ 15 dB	10 dB				
-3dB bandwidth	10 MHz	N.A.	20.2 MHz	N.A.	N.A.				
Central frequency	5.5 GHz	237.8 MHz/ 493.7 MHz	2.1 GHz	1.625 GHz/ 2.25 GHz	5.64 GHz				
Operating temperature	-55°C… +125°C	N.A.	N.A.	N.A.	N.A.				
Obs.		Delay lines /Fe-doped GaN on sapphire	Resonator on membrane	GaN/ sapphire	Delay line GaN/Si				
Benorted results are beyond the state of the art for SAW beyond 5 GHz" IEEE									

Reported results are beyond the state of the art for SAW on GaN/Si based band pass filters

Electron Devices Lett.

Vol. 31, pp 1398-1400,

Dec 2010

- Compact (3x0.8 mm²) monolithic integrated SAW-BPF operating @ 5.5 GHz
 - 10 dB IL; 20 dB rejection; 10 MHz -3dB BW
- SAW-BPF on GaN/Si
 - monolithic integration of active devices (HEMTs) possible
 - can be used in harsh environments and extreme temperature conditions

Thank you for your attention!