

A Screening Method Using Pulsed-Power Combined with Infrared Imaging to Detect Pattern Defects in Bulk Metal Foil or Thin Film Resistors

Jay Brusse ASRC AS&D at NASA Goddard Space Flight Center

> Lyudmyla Panashchenko NASA Goddard Space Flight Center

Acronyms & Abbreviations

- Al-N Aluminum Nitride
- DPA Destructive Physical Analysis
- FA Failure Analysis
- InSb Indium Antimonide
- NASA National Aeronautics and Space Administration
- NEPP NASA Electronic Parts & Packaging (NEPP) Program
- NiCr Nichrome
- ppm Parts Per Million
- PWB Printed Wiring Board
- SEM Scanning Electron Microscope
- SMT Surface Mount Technology
- STOL Short Time Over Load
- TCR Temperature Coefficient of Resistance

Foil Resistors Have Many Favorable Attributes

Attribute		SN
Package Configurations	Surface Mount Technology (SMT); Through Hole	
Resistance Values	Custom Values; 5Ω to 125kΩ (standard SMT)	US 1242 08
Resistance Tolerance	± 0.01% (± 100 ppm)	1414 12
Temperature Coefficient of Resistance (TCR)	< ± 1 ppm/°C from -55°C to +125°C	1309 15
Load Life Stability	± 0.03% (± 300ppm) after 2k hour life test @ 1x rated power @ 70°C	1251 20

Basic Construction of a SMT Foil Resistor

Foil Resistor Gridline Patterns

R = Resistance (Ω) ρ = Resistivity of Foil L = Length of Resistor Element A = Cross Sectional Area of Gridline (i.e., thickness * width)

Low Resistance Values

- 1. Wider Foil Gridlines (e.g., \sim > 10 μ m)
- 2. Thicker Foil (e.g., ~ 5 μm)
- 3. Shorter Path Lengths

High Resistance Values

- 1. Narrower Foil Gridlines (e.g., \sim < 10 μ m)
- 2. Thinner Foil (e.g., ~ 2 μm)
- 3. Longer Path Lengths

Foil Resistors Are Sometimes Produced with Localized Constriction Defects in the Gridline Pattern

- 1. Constriction defects contribute directly to the final resistance value (e.g., bridges provide parallel resistor pathway).
- 2. Constriction defects are at risk of breaking due to thermomechanical fatigue fracture especially during power cycling
 - 1. Constrictions carry higher current density and develop localized 'hot spots' due to Joule heating
 - 2. Hot spots produce locally greater expansion of the NiCr foil
- 3. If a constriction defect fractures, then a positive resistance shift, including open circuit, will occur.

Standard Screening Tests are Not 100% Effective at Detecting Constriction Defects

Despite Performing These Screening Tests, Resistors with Significant Constriction Defects are Still Occasionally Received

Test Method	Test Conditions	Rejection Criteria
Pre-Encapsulation Optical Microscopy	30x to 60x Magnification	Notches > 75% nominal line width Bridges < 10% smallest line width
Short Time Overload (STOL)	6.25x Rated Power For 5 Seconds	ΔR > 0.02%
Power Conditioning	1x to 1.5x Rated Power @ Max Operating Temp For 100 Hours	ΔR > 0.03%

Hot Spots! A New Screening Method to Detect Localized Constrictions *Pulsed-Power Combined with High Resolution Infrared Imaging*

- 1. Apply pulsed-power to resistor
 - 6.25x rated power ← same as STOL
 - 50 ms, 10% duty cycle
 - 1 or more pulses
 - These conditions confine heating to the localized constrictions

2. Examine resistor with high resolution infrared camera (e.g. FLIR SC8300)

- 3. Reject resistors with *"hot spots"*
 - Hot spots are indicative of constriction defects (e.g., notches, bridges, embedded particles)

Demonstration of New Screening Method Using DPA Sample with Bridge and Notch Defects

NASA

Demonstration of New Screening Method Using DPA Sample with Bridge and Notch Defects

To be presented by Jay Brusse at the 3rd Space Passive Component Days (SPCD) Conference, Noordwijk, The Netherlands, October 9-12, 2018.

Demonstration of New Screening Method Using DPA Sample with Bridge and Notch Defects

To be presented by Jay Brusse at the 3rd Space Passive Component Days (SPCD) Conference, Noordwijk, The Netherlands, October 9-12, 2018.

These Protective Coatings are <u>"See Through"</u> for Infrared Wavelengths of $3\mu m$ to $5\mu m$ Even With <u>No Power Applied</u> to the Resistor

> Enables <u>Post-Procurement</u> Screening of SMT Foil Resistors

Optical Image

Infrared Image

Evaluation of New Screening Method

	aliun	
Obtain 280Resistor SizeResistance (Ω)PowerResistor P	Resistor Pattern Geometry	
SMT Foil Resistors *Types A, B & C (EIA Footprint) & Tolerance Rating Oty Foil (mW) Thickness (μm) Foil Gridline μm) Width (μm)	* Туре
0805 5.1k ± 0.05% 100 40 2.3	6.6	С
Characterize with 1206 20k ± 0.05% 150 40 2.5	4.8	Α
Pulsed-Power Infrared 1206 20k ± 0.05% 150 40 2.5	4.8	В
10k Hour Life Test 1206 23.5k ± 0.05% 150 40 2.3	4.3	С
1x Rated Power @ 70°C 1506 36.45k ± 0.05% 200 40 2.8 1 Fbrs ON / 0 Fbrs OFF 1506 36.45k ± 0.05% 200 40 2.8	4.1	Α
1.5ms ON / 0.5ms OFF 1506 36.45k ± 0.05% 200 40 2.8	4.1	В
Repeat Pulsed-Power201050k ± 0.01%300402.5Infrared Characterization	4.8	В
To Identify Changes Total 280		
*Type Foil Classification Pre-Encapsulation Screen	Powered Screening	
Failure Analysis A Contains Some "Embedded Particles" 100% Visual Inspection	1x Short Time Overload (S	STOL)
B "Particle-Free" 100% Visual Inspection	1x Short Time Overload (S	STOL)
C "Particle-Free" 100% Visual Inspection To be presented by Jay Brusse at the 2 rd Space Passive Component Days (SPCD) Conference, Neordwijk, The Netherlands, October 9, 1	2x Short Time Overload (S	5TOL)

Results: Pre-Life Test Pulsed-Power Infrared Screening ~10% to 25% of Resistors Per Lot Tested Had Constriction Defects

Totals

280 Tested

30 with Notch Defects

28 with Bridge Defects

Results: 3 Life Test Failures (280 Resistors Tested)

Abrupt Positive Resistance Shift Failure Modes

Failure Analysis: *0805, 5.1kΩ, S/N 12, Type "C"*

Conclusion:

<u>Two</u> bridge defects fractured during life test causing total ΔR ~11000 ppm

Pulsed-Power Infrared Screen detected both bridge defects as 'hot spots' BEFORE Life Test

To be presented by Jay Brusse at the 3rd Space Passive Component Days (SPCD) Conference, Noordwijk, The Netherlands, October 9-12, 2018.

Failure Analysis: 1206, 20kΩ, S/N 28, Type "A"

<u>Conclusion:</u> One bridge defect fractured during life test causing ΔR ~19400 ppm

Pulsed-Power Infrared Screen detected this bridge defect as a 'hot spot' BEFORE Life Test

To be presented by Jay Brusse at the 3rd Space Passive Component Days (SPCD) Conference, Noordwijk, The Netherlands, October 9-12, 2018.

EHT = 20

Failure Analysis: 2010, 50kΩ, S/N 48, Type "B"

Detector = SE2

<u>Conclusion:</u> One bridge defect fractured during life test causing $\Delta R \sim 4200$ ppm

Pulsed-Power Infrared Screen detected this bridge defect as a 'hot spot' BEFORE Life Test

To be presented by Jay Brusse at the 3rd Space Passive Component Days (SPCD) Conference, Noordwijk, The Netherlands, October 9-12, 2018.

EHT = 10.00 kV

Conclusions

- 1. Standard screening techniques (e.g., pre-encapsulation visual, STOL, DPA) Do NOT detect all resistors with significant constriction defects in the resistor pattern.
- 2. Resistor failures (i.e., positive ΔR and open circuit) sometimes occur due to thermomechanicallyinduced fatigue fracture of localized constriction defects in the resistor pattern (e.g., notches, bridges, embedded particles).
- 3. New Pulsed-Power Infrared Screening technique has been developed
 - Detects localized constriction defects as "hot spots" using high resolution infrared thermography
 - Proven effective via 10k hour life test with failure analyses correlating pre-existing constriction defects to 'hot spots' and subsequent fractured constrictions after life test
 - Suitable for use as an 'In-Process Manufacturer Screening Inspection' prior to encapsulation And as a non-destructive 'Post-Procurement' screen for SMT foil resistors

New Screening Technique Can Take a Super Stable Resistor Technology and Make it Super Reliable Too

To be presented by Jay Brusse at the 3rd Space Passive Component Days (SPCD) Conference, Noordwijk, The Netherlands, October 9-12, 2018.

Acknowledgements

Work Performed in Support of the NASA Electronic Parts & Packaging (NEPP) Program		
Mike Sampson Manager, NASA Electronic Parts & Packaging Program	Dr. Henning Leidecker Chief Parts Engineer, NASA Goddard Space Flight Center	
Jack Shue NASA Goddard Space Flight Center Office of Safety and Mission Assurance	Alexandros Bontzos, Chris Greenwell, Tim Mondy, Nilesh Shah, Ron Weachock NASA Goddard Space Flight Center Parts Analysis Laboratory	

Foil Resistor Samples and Life Testing Services Provided by

Vishay Precision Group (VPG)

Backup Slides

High Resolution Infrared Camera with 4x lens option *FLIR SC8200, SC8300 Series*

Parameter	Specification	
Detector	InSb	
Spectral Range	3 μm to 5 μm	
Measurement	-20°C to ±350°C	
Temp Range	-20 C t0 +550 C	
Field of View	~4.6mm x 5.6mm	
	> 1 million pixels	
Resolution	~ 5 μm per pixel	
Focal Working	~75mm	
Distance	2311111	
Frame Capture	>100 frames per second	
Rate	>100 hannes per second	

Comparison of Two Different Infrared Cameras

Inspecting the same resistor with 2 constriction defects while applying power pulses

Basic Construction of a SMT Foil Resistor Cross Section

Cross Section

SMT Thin Film Resistors Inspected Using New Pulsed-Power Infrared Screening Method

Applying 6.25x Rated Power for 100 ms pulses; 10% duty cycle

Infrared Inspection Performed Without Removing Resistor Protective Coatings

A Case for an Improved Screening Method: Embedded Al-N Particle in Foil Resistor Size 1206, 30 k Ω

Fractured NiCr Gridline With Embedded Al-N Particle

Aluminum Nitride Particle

Traditional Resistor Screening Methods

Optical Microscopy

	Thin Film (MIL-PRF-55342)	Foil Resistors
Test Conditions	30x to 60x optical microscopy prior to encapsulation	
Sample Size	100% in-process screen	100% high reliability products only
Rejection Criteria	Voids > 50% nominal line width Bridges < 50% smallest line width	Voids > 75% nominal line width Bridges < 10% smallest line width

Void > 75% in Foil Resistor

Bridge < 10% in Foil Resistor

Traditional Resistor Screening Methods Short Time Overload (STOL)

	Thin Film (MIL-PRF-55342)	Foil Resistors
Test Conditions	6.25x rated power for 5 seconds	
Sample Size	20 pcs (space level only)	10 pcs (high reliability products)
Rejection Criteria	ΔR > 0.1%	ΔR > 0.02%

STOL may sometimes force failure of devices with the most severe pattern constrictions

Traditional Resistor Screening Methods *Power Conditioning*

	Thin Film (MIL-PRF-55342)	Foil Resistors
Test Conditions	1.5x rated power for 100 hours at 70°C	
Sample Size	100% (space level only)	100% (high reliability products only)
Rejection Criteria	ΔR > 0.2%	ΔR > 0.03%

Power Conditioning may sometimes force failure of devices with the most severe pattern constrictions

Conclusion:

This Resistor Exhibited Two Abrupt Positive ΔR Shifts During Life Test. Both Shifts Were Caused by Thermomechanically-Induced Fatigue Fracture of Two Separate Foil Bridge Defects

To be presented by Jay Brusse at the 3rd Space Passive Component Days (SPCD) Conference, Noordwijk, The Netherlands, October 9-12, 2018.