POLYMER TANTALUM CAPACITORS WITH SUPPRESSED SENSITIVITY TO WATER CONTENT

J. Petržílek, M. Uher, J. Navrátil

- AVX Czech Republic s.r.o., Dvorakova 328, 563 01 Lanskroun, Czech Republic
 Tel.: +420 465 358 126
 e-mail: jan.petrzilek@avx.com

October 2018, 3RD SPACE PASSIVE COMPONENT DAYS
Outline

Tantalum/Niobium oxide Electrolytic Capacitors

- Liquid electrolyte
- MnO₂
- Polymer

Solid - MnO₂ / Ta anode electronic conduction
- High temperature
- Well-established reliability
- Failure mode
- Voltage limited
- 50% derating

Solid - Polymer / Ta anode electronic conduction
- High voltage
- Safe failure mode
- High temperature
- Temperature limited humidity & oxygen sensitive

Surge Currents

- Surge current at 25°C
- 30% higher energy needed

Temperature Cycling Currents

- Online measurement of current
- Voltage applied at 55°C; current high, then drops after temperature increase

Improvement of Hermetically Sealed Capacitors

- 22μF/100V hermetically sealed polymer
- Improved charging rate 120V/s

Transient (Anomalous) Currents

- Current decreases slowly when polymer cathode is used

- The phenomenon
 - Dry: no permanent dielectric damage
 - Wet: dry to the granules
 - More sensitive for pre-polymered cathode material
 - Not related to AVX product only

Anomalous Charging Currents

- Charging of dry capacitors - charging rate 120V/s
 - Temperature sensitive - anomaly is between -55 to 65°C

Temperature Cycling Currents

- Charging current and current at 30V

Improvement by Technology (DOE)

- Charging current (reflow + 1 hour) @ 20V (0.8xI₀)

AVX Confidential

http://www.avx.com
Tantalum/Niobium oxide Electrolytic Capacitors

general benefits
- high capacitance
- volumetric efficiency
- parametric stability
- long service lifetime
- long-term reliability

Diagram

- **Cathode System**
 - Outside
 - MnO2 or Poly
 - Carbon Coated
 - Silver Dipped
 - OR liquid electrolyte

- **Dielectric Layer**
 - Ta2O5 or Nb2O5
 - Middle

- **Anode (Ta or NbO)**
 - Inside

Comparison Chart

<table>
<thead>
<tr>
<th>Conventional</th>
<th>Conventional</th>
<th>Polymer</th>
<th>NbO - OxiCap</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2SO4 + special layers</td>
<td>MnO2</td>
<td>Polymer</td>
<td>MnO2</td>
</tr>
<tr>
<td>Ta2O5</td>
<td>Ta2O5</td>
<td>Ta2O5</td>
<td>Nb2O5</td>
</tr>
<tr>
<td>Ta</td>
<td>Ta</td>
<td>Ta</td>
<td>NbO</td>
</tr>
</tbody>
</table>
Tantalum/Niobium oxide Electrolytic Capacitors

<table>
<thead>
<tr>
<th>Liquid electrolyte</th>
<th>MnO<sub>2</sub></th>
<th>Polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WET / Ta anode</td>
<td>Solid - MnO<sub>2</sub> / Ta anode</td>
<td>Solid – Polymer / Ta anode</td>
</tr>
<tr>
<td>ionic conduction</td>
<td>electronic conduction</td>
<td>electronic conduction</td>
</tr>
<tr>
<td>hermetically sealed</td>
<td>+ high temperature</td>
<td>+ low ESR</td>
</tr>
<tr>
<td>+ surge robust</td>
<td>+ well established reliability</td>
<td>+ safe failure mode</td>
</tr>
<tr>
<td>+ high voltage</td>
<td>- derating</td>
<td>+ high voltage</td>
</tr>
<tr>
<td>+ high temperature</td>
<td>- failure mode</td>
<td>+ low derating</td>
</tr>
<tr>
<td>+ high capacitance</td>
<td>- ESR higher</td>
<td>- temperature limited</td>
</tr>
<tr>
<td>- temperature dependent</td>
<td>- medium voltage limited</td>
<td>- humidity & oxygen sensitive</td>
</tr>
<tr>
<td>- frequency dependent</td>
<td></td>
<td>sensitive</td>
</tr>
<tr>
<td>- electrolyte leak possible</td>
<td></td>
<td>- specific issues</td>
</tr>
</tbody>
</table>

- low voltage/temp. limited
- ESR higher

AVX Confidential
Transient (Anomalous) Currents

- current decreases slowly when polymer cathode is very dry
- the phenomenon is
 - reversible = no permanent dielectric damage
 - dependant on temperature – low temperatures is the worst case
 - more pronounced for pre-polymerized cathode material
 - not limited to AVX product only
DC Leakage Currents at temperatures

- with longer time measurement (30 min)
 - at -55°C current is still high
 - at other temperatures current is stabilised

Current measured at rated voltage for 30 minutes

-55°C
150°C
125°C
105°C
85°C
196°C
25°C
Anomalous Charging Currents

- charging of dry capacitors - charging rate 120V/s
 - temperature sensitive – anomaly is between -55 to 65°C
Surge Currents

surge current at 25°C

- 38.5V
- 80V

Significantly higher energy needed

total surge energy till 2.4ms

- MnO2
- dry polymer
- humid polymer

Theoretical capacitor E (0.007)
Temperature Cycling Currents

- online measurement of current
- when voltage is applied at -55°C current is high, but drops after temperature increase
Summary

Higher charging currents can occur under specific conditions:
- polymeric cathode
- extremely dry conditions
- temperatures -55°C to +65°C

Potential practical impacts:
- difficulties with DC leakage measurement
- problems with charging just after soldering
- high currents when switch on after no bias and dry conditions
- high currents at temperatures below zero
- after soldering
- hours at elevated temp.
- long time under vacuum
- dry hermetically sealed
Improvement by Technology (DOE)

Charging Current (reflow + 1 hour) @ 20V (0.8xUr)

TCJ Y336M025#

Parameter A
Parameter B
Parameter C

Charging Current (A)

dU/dt = 120 V/s

TCJ Y33µF/25V
Improved Technology Results

current drops fast for improved technology

Graph:
- **DRY:**
 - MnO2 (25°C, -55°C)
 - Polymer (25°C, -55°C)
- **HUMID:**
 - MnO2, polymer (25°C, -55°C)

Legend:
- Improved MnO2 and polymer performance in DRY and HUMID conditions.

Technical Information:
- TCJ D10µF/35V
- 25°C and -55°C testing conditions.
Improvement of Hermetically Sealed Capacitors

22μF/100V hermetically sealed polymer

charging rate 120V/s

short time current measurement
Improvement of J-Cap™ Undertab

Table:
- **from drypack**
- **reflow**
- **reflow+125°C**
- **reflow+150°C**

Graphs:
- Current [mA] vs. Time [s] for each category:
 - **STD:** 1/ start
 - **STD:** 2/ rfw+1h
 - **STD:** 3/ 125°C 16hrs
 - **STD:** 4/ 150°C 4hrs

Reference Line:
- Customer DCL limit @ 5 minutes

Graph:
- Improved performance

Graph:
- **TCNX476M035# - Charging current**
 - 25°C drying (16 hrs); reflow & directly measured after cooling

Improved
Conclusions

- dry tantalum capacitors with prepolymerized cathode suffer from increased charging currents and slow current decreasing after voltage application
- the effect is temperature dependent
- clear scientific explanation is not available yet
- AVX has developed specific technology that eliminates the transient current issues
Thank you.