The Pandemic Can Empower Us to Explore Part Substitution

It is time to look more closely to parts substitution according to a TTI Market Eye article by Murray Slovick.

With the availability of passive components (along with just about everything else) thrown into total disarray with the global COVID-19 pandemic, orders in certain end-markets such as medical technology and laboratory test equipment have increased dramatically; in other markets such as automotive, demand has slowed radically.

The ability to identify and source parts that closely meet design requirements is critical to reducing product costs and getting products delivered on time and on budget. The application typically dictates the best choice of capacitor type to use in the design – aluminum electrolytic, tantalum, MLCC, etc. Each type of capacitor is well-suited to some fields and ill-suited to others.

When actually designing circuits, it is now necessary to consider availability along with the usual factors taken into account, such as performance characteristics, long term endurance, high reliability, cost and size, when selecting the best capacitor for the job.

If there is a silver lining to the current global situation, faced with uncertain supply for many components, designers are being forced to be flexible in what they design in, considering alternatives perhaps not thought of seriously before.

Finding a replacement part, as with all engineering problems, is a matter of finding the right compromises. For example, there are cases where polymer caps can provide an alternative to MLCC devices – if design parameters allow.

While engineers are naturally reticent to go away from tried-and true solutions, given that it’s impossible to predict availability, the additional time required for changes to the BOM or to the design after the first revision could well be offset by the potential savings in time not spent waiting for component deliveries.

Component substitution can work in multiple directions. Aluminum and tantalum electrolytic capacitors are used in applications which require large capacitance, but miniaturizing these products is difficult and they possess significant problems with self-heating due to ripple currents. However, due to advances in large-capacitance MLCCs, it has become possible to replace the various types of capacitors used in power supply circuits with MLCCs (if it turns out the ones you need are available).

Just remember that anytime you play this game, it is important to exercise caution in usage. Switching to MLCCs provides various benefits, such as small size, but the low equivalent series resistance (ESR) feature of the MLCC can have adverse effects (e.g. oscillation) in power supply circuits.

With that example in mind, let’s see the conditions where polymer capacitors (fully described as “conductive polymer aluminum solid capacitors”) might be a viable alternative for a given MLCC application. Since the decision relies on having a good understanding of both types, let’s look at their similarities and differences.

Similarities:

Differences:

Size Flexibility

Even within a capacitor type – take MLCCs as an example – design flexibility is important. Industries such as telecommunications and consumer electronics have driven component miniaturization, with electronics manufacturers increasingly switching to smaller-size caps. But when availability becomes an issue, a good question to ask is, Do I need to downsize?

To achieve the same results with downsized MLCCs, more of them may have to be placed. In addition, adjusting the PCB layout and placement can result in extra costs, which manifest themselves in higher assembly times and positioning that may run more slowly. Also, new pick-and-place machines may be required. Downsizing can have its shortcomings, also, such as diminished electrical stability or performance. Typically, a larger ceramic capacitor has less capacitance change under the same DC bias voltage compared to smaller ones. So, whenever you are changing your MLCC to a smaller size, you have to check the electrical performance, because it will likely change.

Questions to Keep in Mind

There has never been a more diverse range of capacitor technologies and capabilities for engineers to choose from. Ask yourself: Which capacitor properties are really important for my design? Then, use the tools available to get the right parts at the right time.

You’ll find that authorized distributors can provide you with as much information as possible about the status of parts, in real time. They will also inform you on the impact to delivery of components manufactured in regions of the world affected by COVID-19, as well as a complete list of the most current lead-time trends, to help you ensure as best as possible that the products you need will arrive on time.

Exit mobile version