What is a Dielectric Constant of Plastic Materials?

This article describes dielectric constant of plastic materials, how to calculate it and factors affecting it.


What is Dielectric Constant?

The dielectric constant (Dk) of a plastic or dielectric or insulating material can be defined as the ratio of the charge stored in an insulating material placed between two metallic plates to the charge that can be stored when the insulating material is replaced by vacuum or air. It is also called as electric permittivity or simply permittivity.

And, at times referred as relative permittivity, because it is measured relatively from the permittivity of free space (ε0).

Dielectric constant characterizes the ability of the material to store electrical energy. Overview of the most common dielectric material constant used in capacitors is provided in the article here.

Typical values of ε for some referenced and organic dielectrics are:

MaterialDielectric Constant (ε)
Vacuum1.000
Dry Air1.0059
Foam Polyethylene1.6
Fluoropolymers2.0
Polypropylene2.1
Butyl Rubber2.3
SBR2.9
Silicone Rubber3.2
Plexiglass3.4
PVC4.0
Glass3.8-14.5
Distilled Water~80

A dielectric constant of 2 means an insulator will absorb twice more electrical charge than vacuum.

Applications include:

Use of materials in the production of capacitors used in radios and other electrical equipment. Commonly used by circuit designers to compare different printed-circuit-board (PCB) materials.
Development of materials for energy storage applications.

For example, polymer-based dielectric composites are highly desirable for applications ranging from electronic packaging, embedded capacitors, to energy storage. These composites are highly flexible with a low process temperature and they exhibit a relatively high dielectric constant, low dielectric loss, high dielectric strength.

How to Calculate Dielectric Constant?

In other words, dielectric constant can also be defined as the ratio of the capacitance induced by two metallic plates with an insulator between them, to the capacitance of the same plates with air or a vacuum between them.

An insulating material with higher dielectric constant is needed when it is to be used in E&E applications where high capacitance is needed.
If a material were to be used for strictly insulating purposes, it would be better to have a lower dielectric constant.

The dielectric constant formula is:

Where:

  • C = capacitance using the material as the dielectric capacitor
  • C0 = capacitance using vacuum as the dielectric
  • ε0 = Permittivity of free space (8.85 x 10-12 F/m i.e. Farad per metre)
  • A = Area of the plate/sample cross section area
  • T = Thickness of the sample

Dielectric Constant Units: This electrical property is a dimensionless measure.
The most generally used standard tests to calculate dielectric constant for plastics are ASTM D2520, ASTM D150 or IEC 60250 (ofcourse there exist several other methods as well, but they are not discussed here).

The method includes:
A sample is placed between two metallic plates and capacitance is measured. A second run is measured without the specimen between the two electrodes. The ratio of these two values is the dielectric constant. The test can be conducted at different frequencies, often between the 10Hz and 2MHz range

  • The sample must be flat and larger than the 50mm (2 in) circular electrodes used for the measurement.

Polar Plastics Vs Non-polar Plastics

Dielectric properties of a polymer largely depend upon their structure. The structure determines whether a polymer is polar or non-polar and this in turn decided the electrical properties of the polymer.

Polar plastics have a tendency to absorb moisture from the atmosphere. Presence of moisture raises the dielectric constant and lowers the resistivity. With rise in temperature, there is faster movement of polymer chains and fast alignment of dipoles. This invariably raises the dielectric constant values for polar plastics.

Non-polar plastics are not affected by moisture and rise in temperature.

Factors Influencing Dielectric Constant

Dielectric Constant Values of Several Plastics

 

Polymer Name Min Value Max Value
ABS – Acrylonitrile Butadiene Styrene 2.70 3.20
ABS Flame Retardant 2.80 3.00
ABS High Heat 2.40 5.00
ABS High Impact 2.40 5.00
ABS/PC Blend – Acrylonitrile Butadiene Styrene/Polycarbonate Blend 2.90 3.20
ABS/PC Blend 20% Glass Fiber 3.10 3.20
Amorphous TPI Blend, Ultra-high heat, Chemical Resistant (Standard Flow) 3.50 3.50
ASA – Acrylonitrile Styrene Acrylate 3.30 3.80
ASA/PC Blend – Acrylonitrile Styrene Acrylate/Polycarbonate Blend 3.00 3.40
ASA/PC Flame Retardant 3.20 3.20
CA – Cellulose Acetate 3.00 8.00
CAB – Cellulose Acetate Butyrate 3.00 7.00
CP – Cellulose Proprionate 3.00 4.00
CPVC – Chlorinated Polyvinyl Chloride 3.00 6.00
ECTFE 2.57 2.59
ETFE – Ethylene Tetrafluoroethylene 2.60 2.60
EVA – Ethylene Vinyl Acetate 2.50 3.00
EVOH – Ethylene Vinyl Alcohol 4.80 5.60
FEP – Fluorinated Ethylene Propylene 2.10 2.10
HDPE – High Density Polyethylene 2.30 2.30
HIPS – High Impact Polystyrene 2.40 4.80
HIPS Flame Retardant V0 2.00 3.00
LCP – Liquid Crystal Polymer 3.30 3.30
LCP Glass Fiber-reinforced 3.00 4.00
LCP Mineral-filled 3.00 5.90
LDPE – Low Density Polyethylene 2.30 2.30
LLDPE – Linear Low Density Polyethylene 2.30 2.30
MABS – Transparent Acrylonitrile Butadiene Styrene 2.80 3.00
PA 11 – (Polyamide 11) 30% Glass fiber reinforced 4.80 4.80
PA 11, Conductive 3.00 9.00
PA 11, Flexible 3.00 9.00
PA 11, Rigid 3.00 9.00
PA 12 (Polyamide 12), Conductive 3.00 9.00
PA 12, Fiber-reinforced 3.00 9.00
PA 12, Flexible 3.00 9.00
PA 12, Glass Filled 3.00 9.00
PA 12, Rigid 3.00 9.00
PA 46 – Polyamide 46 3.40 3.80
PA 46, 30% Glass Fiber 4.00 4.60
PA 6 – Polyamide 6 4.00 5.00
PA 6-10 – Polyamide 6-10 3.00 4.00
PA 66 – Polyamide 6-6 4.00 5.00
PA 66, 30% Glass Fiber 3.50 5.60
PA 66, 30% Mineral filled 4.00 5.00
PA 66, Impact Modified, 15-30% Glass Fiber 3.40 4.20
PA 66, Impact Modified 2.90 5.00
PAI – Polyamide-Imide 3.90 7.30
PAI, 30% Glass Fiber 4.20 6.50
PAR – Polyarylate 3.30 3.30
PARA (Polyarylamide), 30-60% glass fiber 3.90 4.50
PBT – Polybutylene Terephthalate 2.90 4.00
PBT, 30% Glass Fiber 3.00 4.00
PC (Polycarbonate) 20-40% Glass Fiber 3.00 3.50
PC (Polycarbonate) 20-40% Glass Fiber Flame Retardant 3.00 3.80
PC – Polycarbonate, high heat 2.80 3.80
PC/PBT Blend – Polycarbonate/Polybutylene Terephthalate Blend 2.95 3.14
PC/PBT blend, Glass Filled 3.30 3.90
PCTFE – Polymonochlorotrifluoroethylene 2.00 3.00
PE – Polyethylene 30% Glass Fiber 2.70 2.80
PEEK – Polyetheretherketone 3.20 3.20
PEEK 30% Carbon Fiber-reinforced 3.20 3.40
PEEK 30% Glass Fiber-reinforced 3.30 4.20
PEI – Polyetherimide 3.10 3.20
PEI, 30% Glass Fiber-reinforced 3.00 4.00
PEI, Mineral Filled 3.00 4.00
PEKK (Polyetherketoneketone), Low Cristallinity Grade 3.30 3.30
PESU – Polyethersulfone 3.50 4.10
PESU 10-30% glass fiber 4.20 4.30
PET – Polyethylene Terephtalate 3.00 4.00
PET, 30% Glass Fiber-reinforced 3.00 4.00
PETG – Polyethylene Terephtalate Glycol 3.00 4.00
PFA – Perfluoroalkoxy 2.10 2.10
PI – Polyimide 3.10 3.55
PMMA – Polymethylmethacrylate/Acrylic 2.00 5.00
PMMA (Acrylic) High Heat 3.20 4.00
PMMA (Acrylic) Impact Modified 2.90 3.70
PMP – Polymethylpentene 2.10 3.60
PMP 30% Glass Fiber-reinforced 2.40 2.40
PMP Mineral Filled 2.30 2.30
POM – Polyoxymethylene (Acetal) 3.30 4.70
POM (Acetal) Impact Modified 4.00 4.30
POM (Acetal) Low Friction 3.00 4.00
PP – Polypropylene 10-20% Glass Fiber 2.60 2.60
PP, 10-40% Mineral Filled 2.30 2.30
PP, 10-40% Talc Filled 2.30 2.30
PP, 30-40% Glass Fiber-reinforced 2.60 2.60
PP (Polypropylene) Copolymer 2.30 2.30
PP (Polypropylene) Homopolymer 2.30 2.30
PP, Impact Modified 2.30 2.30
PPA – Polyphthalamide 4.30 4.30
PPA, 30% Mineral-filled 4.00 4.20
PPA, 33% Glass Fiber-reinforced 4.40 4.60
PPA, 33% Glass Fiber-reinforced – High Flow 3.70 3.90
PPA, 45% Glass Fiber-reinforced 4.40 4.60
PPE – Polyphenylene Ether 2.70 2.70
PPE, 30% Glass Fiber-reinforced 2.90 2.90
PPE, Flame Retardant 2.70 2.70
PPS – Polyphenylene Sulfide 3.00 3.30
PPS, 20-30% Glass Fiber-reinforced 3.30 3.80
PPS, 40% Glass Fiber-reinforced 4.00 4.00
PPS, Glass fiber & Mineral-filled 5.00 5.00
PPSU – Polyphenylene Sulfone 3.40 3.50
PS (Polystyrene) 30% glass fiber 2.50 2.50
PS (Polystyrene) Crystal 2.40 2.70
PS, High Heat 2.40 2.70
PSU – Polysulfone 3.00 3.20
PSU, 30% Glass finer-reinforced 3.60 3.70
PTFE – Polytetrafluoroethylene 2.10 2.10
PTFE, 25% Glass Fiber-reinforced 3.00 3.00
PVC, Plasticized 3.00 5.00
PVC, Plasticized Filled 3.00 5.00
PVC Rigid 3.00 4.00
PVDC – Polyvinylidene Chloride 3.00 6.00
PVDF – Polyvinylidene Fluoride 6.00 9.00
SAN – Styrene Acrylonitrile 2.50 3.40
SAN, 20% Glass Fiber-reinforced 3.20 3.80
SMA – Styrene Maleic Anhydride 2.80 2.80
SMA, 20% Glass Fiber-reinforced 3.30 3.30
SMMA – Styrene Methyl Methacrylate 3.20 3.20
SRP – Self-reinforced Polyphenylene 3.10 3.10
UHMWPE – Ultra High Molecular Weight Polyethylene 2.30 2.30

 


Find commercial grades matching your electrical property target using “Property Search – Dielectric Constant” filter in Omnexus Plastics Database.
Exit mobile version