Silicon Capacitors Reliable Performance in Harsh Conditions

The paper “Muratas Silicon Capacitors: Reliable Performance in Extreme Conditions” was presented by Enzo Darcy, Caen, France at the 5th PCNS Passive Components Networking Symposium 9-12th September 2025, Seville, Spain as paper No. 1.3.

Introduction

Murata’s silicon capacitors have emerged as a reliable solution for applications operating in the harshest conditions, from deep space missions to cryogenic environments. Their design leverages Passive Integration Connecting Substrate (PICS) technology, enabling ultra-miniaturization, exceptional stability, and high reliability. Unlike conventional Multi-Layer Ceramic Capacitors (MLCCs), Murata’s devices maintain performance across extreme temperatures, under radiation exposure, and during mechanical stress.

Key Points

Extended Summary

Murata silicon capacitors are built using PICS technology, enabling integration of high-density capacitors with superior thermal and electrical stability. The technology allows for ultra-deep trench structures and Metal-Insulator-Metal (MIM) or trench Metal-Oxide-Semiconductor (MOS) capacitor formation, facilitating miniaturization without sacrificing performance.

When compared to MLCCs, Murata capacitors exhibit clear advantages in environments requiring extreme reliability. MLCC performance drops significantly above 125 °C to 150 °C, often requiring voltage derating, which increases size and weight. Murata’s capacitors, on the other hand, maintain stable capacitance and low leakage currents even at 300 °C, with insulation resistance two orders of magnitude higher than standard NPO/COG dielectrics. This makes them particularly valuable in aerospace and industrial applications where miniaturization and long-term reliability are critical.

High-frequency applications benefit from Murata’s extremely low parasitic elements. The eXtrem-Broadband X2SC series, for example, provides 10 nF in a 0.6 × 0.3 mm package, with ESR below 220 mΩ and ESL below 20 pH. Such characteristics ensure strong signal integrity for devices operating up to 220 GHz.

Environmental robustness is a defining strength. Murata capacitors withstand rigorous thermal cycling (300 cycles from -65 °C to +200 °C) and mechanical stress tests without electrical degradation. They also exhibit excellent radiation tolerance, surviving heavy-ion exposure up to 62.5 MeV·cm²/mg and total doses around 293 krad without failures. This resilience makes them suitable for space missions, cryogenic experiments, and geothermal drilling systems.

In terms of longevity, Time-Dependent Dielectric Breakdown (TDDB) testing indicates that Murata capacitors can operate for over 50 years at 250 °C under 10 V, far surpassing MLCCs, which often fail within a year under far less extreme conditions.

Conclusion

Murata’s silicon capacitors set a new benchmark for high-reliability passive components, excelling in thermal stability, radiation resistance, lifetime, and miniaturization. Their performance makes them a superior alternative to traditional MLCCs in aerospace, cryogenic, and high-frequency applications. By combining extreme environmental resilience with compact form factors, Murata capacitors enable next-generation electronic systems designed for the most demanding operational scenarios.

Exit mobile version