• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

COTS Radiation Design Margin

8.1.2019

KAMIC Group Acquires Wound Components Specialist AGW Electronics

2.6.2023

4th PCNS Registration Opens !

2.6.2023

Ceramic Capacitors Benefits in Military SiC Converters

1.6.2023

Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

31.5.2023

TT Electronics Unveils Busbar Shunt Resistors

31.5.2023

Bourns Releases New Power NTC Thermistors

31.5.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    KAMIC Group Acquires Wound Components Specialist AGW Electronics

    4th PCNS Registration Opens !

    Ceramic Capacitors Benefits in Military SiC Converters

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    TT Electronics Unveils Busbar Shunt Resistors

    Bourns Releases New Power NTC Thermistors

    KYOCERA Developed Industry Leading 008004 Hi-Q MLCC for PA Modules

    MLCC Suppliers Reduced Production Capacity in 1H23 due to Weak Consumer Market Demand

    Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    KAMIC Group Acquires Wound Components Specialist AGW Electronics

    4th PCNS Registration Opens !

    Ceramic Capacitors Benefits in Military SiC Converters

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    TT Electronics Unveils Busbar Shunt Resistors

    Bourns Releases New Power NTC Thermistors

    KYOCERA Developed Industry Leading 008004 Hi-Q MLCC for PA Modules

    MLCC Suppliers Reduced Production Capacity in 1H23 due to Weak Consumer Market Demand

    Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

COTS Radiation Design Margin

8.1.2019
Reading Time: 4 mins read
0
SHARES
1
VIEWS

Source: Intelligent Aerospace article

Passive components are not considered as a radiation sensitive devices by both ESA and NASA standards. Nevertheless it is always good to keep the radiation issues on mind for consideration of new materials or COTS products. See next article about COTS (active) components by Dan Friedlander published at Intelligent Aerospace.

RelatedPosts

KAMIC Group Acquires Wound Components Specialist AGW Electronics

4th PCNS Registration Opens !

Ceramic Capacitors Benefits in Military SiC Converters

EEE COTS components are not considered strong in the total dose withstanding capability domain. The strength of Radiation Hardened, Radiation Tolerant and other components backed by existing radiation tests results is based on decades of on-going relevant activities. Big leading companies in the space industry benefit of large radiation databases. The databases raise them the confidence to develop more complex methodologies to reach the goal of establishing the suitability of an EEE component for space application.

Small space systems and subsystems contractors and subcontractors cannot afford building comprehensive radiation databases. The above is true especially for those just entering the COTS era. They can benefit of the statistics made possible for the high production of COTS, but the small volume of their products works negatively. Consequently, they have to find a methodology to find a reasonable methodology to establish the COTS suitability in space application.

During my experience I have meant at least two versions of the way to deal with the above mentioned radiation issue:

  • One version is related to the EEE component specification.
  • The second version is related to the design specification.

This article deals with the presentation of the two versions, not equally understood by me from the point of view of good engineering practice.

Total Ionizing Dose (TID) Terminology

To establish the TID suitability of an EEE component to a specific space application, one shall prove that the component’s TID withstanding capability is higher than the calculated expected TID level. An applicable Radiation Design Margin has to be taken into account. The above proof strongly depends on the interpretation of the involved term. The EEE component TID withstanding capability is defined by the term Total Ionizing Dose Sensitivity (TIDS). For clearer TIDS definition see below the one stated by ESA TEC‐Q‐2012‐155, issue 1 (Radiation Hardness Assurance – EEE components for JUICE):

Component type TIDS: TID level at which the part exceeds its parametric/functional requirements.

OK, but is it unambiguous? Further, the document “clarifies” the definition: “Component type TIDS shall be based on the parametric and functional limits given in component detail specification or manufacturer data sheet, or on the maximum parameter degradation acceptable to ensure equipment operation in compliance with equipment performance specification at the end of overall lifetime (EOL). NOTE TIDS is defined by comparing part parametric/functional requirements with TID test data.”

The above “OR” statement is addressed in this article.

Another term is the Total Ionizing Dose Level (TIDL), the calculated, expected TID level received by the component at the end of the mission.

The term Radiation Design Margin (RDM) is the ratio of TIDS over TIDL. The  use of an RDM is aimed at overcoming the inevitable uncertainties in environmental calculations and part radiation hardness determinations.

It is worth to emphasize that the term’s name is related to “design” and not to “component”.

TID Requirements

Depending on a given mission space environment (LEO, GEO etc.), a RDM is applicable. For example, for LEO a RDM of 2 is applicable. That means that an EEE component meets the given mission requirement if the ratio of TIDS over TIDL is greater than 2. How can we “improve” the TID withstanding capability of an EEE component (identified by a given part number, manufactured by a given manufacturer) in a given mission, protected by a given shielding? The answer is by increasing somehow the TIDS level. The ambiguous definition (see above) of the TIDS term allows developments of clever solutions within risk management.

The Conservative Component Related Approach

Good engineering practice implies design within the EEE components’ specifications limits. Those limits are set and guaranteed by the component’s manufacturers, based on characterization, qualification, reliability testing etc. etc.

Upgrading (limit extension by users) is outside the manufacturers’ responsibility. Upgrading is a last resort process, done without having intimate knowledge of the relevant data known to the manufacturers. The above facts lead to the healthy component related approach.

From the point of view of the subject TID radiation issue, the approach is based on the following definition derived from the above mentioned ambiguous definition:

“Component type TIDS shall be based on the parametric and functional limits given in component detail specification or manufacturer data sheet.”

In other words the TIDS is the TID level where the EEE component fails to meet its own spec.

The Design Related Approach

From the point of view of the subject TID radiation issue, the approach is based on the following definition derived from the above mentioned ambiguous definition: “TIDS is based on the maximum parameter degradation acceptable to ensure equipment operation in compliance with equipment performance specification at the end of overall lifetime (EOL).”

This approach works for the bigger companies, needing higher TIDS to meet the TIDL requirements. Also they produce big satellite series with similar design. In such cases more or less the same EEE components are procured periodically in batches.

This approach is not in line with the widely practiced “within the component spec limits” design.

Although compelled sometimes to accept this uniquely available approach from certain subcontractors, I did not adopt routinely this approach. From what I have learnt, it works like this:

Based on multi years space activity, radiation testing, design limits are established for the EEE components. Such parameter limits are values beyond the component’s datasheet limits. The values are associated with a relevant TID level, derived (using statistics) from radiation test results of many lots.

Those design limits are used by the designers. In that way the TIDS is related to the design, instead of the component.

This approach allows for “increasing” the TIDS. For projects with high TIDL requirements the resulting benefit is components not meeting the requirements within the component related approach, meet the requirements within the design related approach!!! For projects with low TIDL requirements the RDM increases allowing claims for lower risk and allowing RVT omissions!

However, what about designing outside the datasheet? Is that risk free? For any component that is estimated to have on‐orbit performance degradation due to TID, it shall be demonstrated, performing a Worst Case Analysis (WCA) in accordance with ESA ECSS‐Q‐ST‐30, that the function performs within End of Life (EOL).

Related Posts

Capacitors

4th PCNS Registration Opens !

2.6.2023
13
Aerospace & Defence

Ceramic Capacitors Benefits in Military SiC Converters

1.6.2023
9
Capacitors

Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

25.5.2023
58

Upcoming Events

Jun 13
June 13 @ 12:00 - June 16 @ 14:00 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Jun 14
11:00 - 12:00 CEST

STRETCH.flex 2.0 Stretchable PCB Technology to the Limits

Jun 20
June 20 @ 12:00 - June 22 @ 14:00 EDT

Copper and Gold Wire Bonding

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Filter Poles and Zeros Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.