Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Demonstrated Ultrahigh Dielectric Constant HfO Thin-Film Capacitors

19.3.2025
Reading Time: 4 mins read
A A

Researchers from The HongKong Polytechnic University, China demonstrated ultrahigh dielectric permittivity observed in HfZrO thin-film capacitors published in their article in Nature Communications Journal.

The study highlights the potential of these capacitors for advanced applications in high-density memory and CMOS devices.

RelatedPosts

Bourns Extends Rotational Life Option for its Guitar Potentiometer

Modeling and Simulation of Leakage Inductance

Power Inductor Considerations for AI High Power Computing – Vishay Video

The dielectric permittivity reaches a value of 921, with nearly 100% efficiency, achieved through the creation of oxygen vacancies and phase transitions in the material.

This innovation could lead to significant advancements in energy-efficient and high-density electronic devices. Here are the key points from the article on ultrahigh dielectric permittivity in HfZrO thin-film capacitors:

  1. Objective and Context: The study explores the potential of HfZrO (Hafnium Zirconium Oxide) thin-film capacitors to achieve ultrahigh dielectric permittivity, which is crucial for improved performance in dynamic random access memory (DRAM) and complementary metal-oxide-semiconductor (CMOS) devices.
  2. Challenges and Innovations: Traditional capacitors face limitations due to low-permittivity interfacial layers, especially in ultrathin films. This study addresses these issues using near-edge plasma treatment and oxygen vacancy engineering to enhance permittivity.
  3. Results of the Study:
    • Achieved a dielectric permittivity of 921 in HfZrO thin films.
    • Observed a dramatic change in dielectric properties due to an oxygen vacancy-ordered structure in the polar Pca2₁ phase.
    • Enhanced energy storage density of 584 J/cm³ with nearly 100% efficiency.
  4. Methodology: Utilized atomic-layer deposition (ALD) for fabricating HfZrO thin films and performed structural characterizations, including X-ray photoelectron spectroscopy (XPS) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM).
  5. Phase Transitions: The study observed a transition from ferroelectric to paraelectric phases, driven by the ordered oxygen vacancies, leading to ultrahigh dielectric permittivity.
  6. Implications: The findings suggest significant advancements for integrating capacitors into high-density memory and logic devices with low energy consumption, offering potential breakthroughs in semiconductor technology.
  7. Future Prospects: The study opens avenues for further research into defect engineering and the effects of oxygen vacancies on dielectric properties, aiming to enhance device performance and efficiency at nanoscale levels.

Abstract

The ever-shrinking electrostatic capacitor, which is capable of storing substantial quantities of electrical charge, has found widespread applications in high-storage-density dynamic random access memory and energy-efficient complementary metal-oxide-semiconductor devices. Despite the high energy storage densities (133–152 J/cm3) and efficiencies (75–90%) that have been realized using relaxor ferroelectric dielectric thick films, low-permittivity interfacial layers in the ultrathin films have caused the overall permittivity to be one to two orders of magnitude lower than expected.

However, innovative use of complementary metal-oxide-semiconductor-compatible HfO2-based materials with high permittivities (~52) could enable integration of these capacitors into few-nanometre-scale devices. This study reports an ultrahigh dielectric permittivity of 921, stored charge density of 349 μC/cm2, and energy density of 584 J/cm3 with nearly 100% efficiency within near-edge plasma-treated Hf0.5Zr0.5O2thin-film capacitors when the Hf-based material’s ferroelectricity disappears suddenly after polarization fatigue. The ultrahigh dielectric permittivity originates from a distorted orthorhombic phase with ordered oxygen vacancies that enables high-density integration of extremely scaled logic and memory devices for low-voltage applications.

Summary

In summary, we observed enhanced dielectric permittivity after near-edge ion implantation in amorphous HZO thin-film capacitors. After bipolar high electric-field cycling of a few micron-sized capacitors, the ferroelectricity disappears suddenly between fatigue numbers of 2.02 × 107 and 6.62 × 107 during the generation of a voltage-independent and hysteresis-free ultrahigh ε′ (598–921 at 1 MHz).

High-resolution STEM-iDPC images reveal ordered oxygen vacancies within the principal O-phase grains, forming a new Pca21’ phase that results in the formation of multiple polar regions and contributes to the ultrahigh dielectric permittivity. First-principles calculations consistently demonstrated progressive reduction of the energy barriers for spontaneous and directional O movements and ferroelectric displacements with the involvement of increasing numbers of oxygen vacancies during ordering. The ultrahigh-ε′ transition enables realization of high charge- and energy storage devices and energy-efficient transistors.

Read the full original paper: Zhang, W.D., Song, Z.Z., Tang, S.Q. et al. Ultrahigh dielectric permittivity in Hf0.5Zr0.5O2thin-film capacitors. Nat Commun 16, 2679 (2025). https://doi.org/10.1038/s41467-025-57963-8

Related

Source: Natural Communications Journal

Recent Posts

Modeling and Simulation of Leakage Inductance

9.5.2025
1

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
35

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
46

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
61

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
32

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
13

Hybrid Energy Storage System for Nanosatellite Applications

1.5.2025
9

COTS-Plus Bulk Tantalum Capacitor for LEO Flight Platforms

29.4.2025
38

Shielding Cabinets

29.4.2025
17

Magnetic Shielding and Magnetic Shielding Sheets

29.4.2025
25

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 14
17:00 - 17:30 CEST

Calculating Foil Winding Losses with AI

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Solid State Polymer Multilayer Capacitors For High Temperature Application

    0 shares
    Share 0 Tweet 0
  • Tariffs Crush Sales Sentiment in April 2025 ECST Results

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version