• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

ADI hits 500W with switched capacitor power converter

28.7.2017

Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

21.5.2022

Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

19.5.2022

Stackpole Presents High Current Metal Shunt Resistors

19.5.2022

Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

19.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

    Panasonic Releases SMD Automotive Power Choke Coil

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

    Panasonic Releases SMD Automotive Power Choke Coil

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

ADI hits 500W with switched capacitor power converter

28.7.2017
Reading Time: 3 mins read
0 0
0
SHARES
360
VIEWS

source: Electronics Weekly news

Analogue Devices has managed to create a 500W switched-capacitor power chip for fixed ratio power conversion at up to 72V and 99% efficiency.

RelatedPosts

Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

Stackpole Presents High Current Metal Shunt Resistors

Power density up to 4,000W/in3 is claimed.

The main application foreseen for the chip, the LTC7820, is 48V non-isolated dc bus conversion, although it is capable of up, down and inverting conversion at a variety of ratios. An example (see diagram below) is a 50A 54 to 9V (6:1) converter peaking at 98% efficiency at 20A.

“Two LTC7820 IC’s can be cascaded for a 4:1 step-down ratio,” said ADI. “For even higher step-down ratios, such as a 6:1, the Dickson converter topology is recommended and is ideal for 54V input to a 9V outputs, requiring only a single LTC7820. ”

LTC7820 54 to 9V converter

6:1 down conversion at up to 98% efficiency.

At least four external n-channel mosfets are required, for which the chip includes four powerful (1.1Ω) gate drivers. Vin max for divide-by-two is 72V, while for doubling and inversion it is 36V. Minimum operating voltage is 6V. An separate power pin allows the chip to be powered from the stepped-down output, or other available sources up to 40V, reducing power dissipation and improving efficiency. Switching frequency range is 100kHz to 1MHz. Other features include: soft-start, input current sensing and protection for: over-current, short-circuit, over-voltage and under-voltage. Package is 4 x 5mm QFN-28, and it operates across -40 to 125°C.

LTC7820 pcb

“It stops switching and pulls the /Fault pin low when a fault condition occurs,” said ADI. “An on-board timer can be set for appropriate re-start/re-try times.”

 

Electronics Weekly contacted the LTC7820 team at Analog Devices to find out more about this novel device.

For example with low-impedance switches connecting capacitors, how are huge current impulses avoided?

It transpires that, before switching starts, the chip pre-charges the power transfer capacitors. For example, in a divide-by-two application, the flying capacitor bank is alternately switched in series and in parallel with the output capacitor bank, so the circuit pre-charges them both to half the input voltage, with the two capacitor banks equal within, say, 500mV or 1V. The actual window is programmable.  According to the engineers, they did a lot of bench work to ensure the scheme works whatever the input voltage and whatever the initial imbalance. For it to work, the load on the output has to be small (<50mA), which can be achieved either by shutting down the downstream dc-dc converter, or with an external output disconnect mosfet. A pin on the chip is available to control either of these options.

Another option is to start switching with no voltage on the input, and then ramp up the input voltage, using a hot-swap controller, for example. This approach has to be used for the 6:1 converter above as pre-charge is not available. An LTC4260 hot-swap controller will work from 8 to 80V, it was pointed out. In this situation, the LTC7820 still does over-voltage and under-voltage detection, and for shut-down the hot-swap controller can be used. A note on the 6:1 converter, is that it is more efficient – at ~97% – than cascading stages to get the same result.

Why was the chip designed in the first place?

Simply for size, and efficiency, said the team. It comes out 50% smaller than a magnetic-based isolated dc-dc brick converter (although isolation is not available with the switched capacitor option) and dissipates less heat.

What about RFI?

Apparently, all four switches are soft-switched, and the voltage-equalising pre-charge means “there is a current impulse, but the voltage difference is so small you don’t see much of an impulse,” Electronics Weekly was told. And “it is not like a buck converter, there no high-voltage ringing”.

Are the capacitors special?

No, they are low-ESR 1210 (2.5 x 3.5mm) ceramic caps: six off 10µF 50V.

And is there anything that the team was pleased with?LTC7820 three diode drive

Yes, the top three mosfets get their high-side drives fed through a simple three-diode arrangement (right). “We use simplest elegant way – three diodes. Nobody else has done that, so we patented architecture.”

 

Related Posts

Automotive

Stackpole Presents High Current Metal Shunt Resistors

19.5.2022
11
Aerospace & Defence

Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

19.5.2022
12
Capacitors

GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

19.5.2022
37

Popular Posts

  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.