• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Applications of Exciter Discharge Resistors

6.11.2017

Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

21.5.2022

Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

19.5.2022

Stackpole Presents High Current Metal Shunt Resistors

19.5.2022

Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

19.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

    Panasonic Releases SMD Automotive Power Choke Coil

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

    Panasonic Releases SMD Automotive Power Choke Coil

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Applications of Exciter Discharge Resistors

6.11.2017
Reading Time: 4 mins read
0 0
0
SHARES
1.2k
VIEWS

source: AZO Materials news

An exciter in a synchronous generator is used to deliver the DC supply to the electromagnetic field winding which is mounted on the generator’s rotor. An appropriate means to discharge the stored energy in the field coil should be available in order to prevent damage that is being sustained to excitation systems during shut down.

Metrosil® silicon carbide varistors have offered a reliable solution for exciter discharge applications for many years and they are being employed in many OEMs in world flagship power projects.

Transients may be produced in excitation systems when the voltage supplied to the field coil is removed, causing a quick reduction in current with time. The energy stored in the coil attempts to maintain the level of the current by producing a large back EMF, which may be many times larger than the supply voltage and may sufficiently be larger to damage other components in the system if uncontrolled.

A technique for controlling the level of the back EMF is to dissipate the current / energy stored in the coil into a suitable load, comprising of either a resistor or a varistor such as a Metrosil. The coil serves as a current source that discharges with time into the load during a discharge event. Then, the voltage produced across the load can be controlled and this voltage is in proportion to the resistance of the load and the current that flows through the load.

RelatedPosts

Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

Stackpole Presents High Current Metal Shunt Resistors

Discharge time characteristics

Discharge time characteristics for different discharge resistors.

3 Gorges dam, Hubei province

3 Gorges dam, Hubei Province, China. The hydro power station uses Metrosil exciter discharge varistors.

Advantages of Metrosils in Exciter Discharge Systems

Metrosil offers a high-speed solution to the discharge of excitation systems. This is due to the degree of non-linearity in the V-I characteristics of the discs.

In addition to providing short discharge times, Metrosil can also be employed in high energy applications, because the discs may be matched easily. This ‘matching’ describes how the difference in the electrical properties of the discs establishes the sharing of energy and current within a Metrosil.

If the discs are not matched appropriately in a unit, it may cause uneven current and energy distributions in the unit and limit the rating of the unit or probably lead to failure. Problems in matching with highly non-linear varistors limits their utilization to low energy applications.

Metrosil combines the energy absorption capability and the ideal characteristics of non-linearity for exciter discharge applications.

An unspaced Metrosil unit

An unspaced Metrosil unit as used in a switched static exciter discharge system.

Customized Solutions

For medium to large exciter discharge applications, it is normal to switch in the exciter discharge system at the same time as switching out the supply voltage. This can be attained through a field breaker or a thyristor crowbar control system. This technique is widely employed in static excitation systems.

switched exciter discharge circuit

Typical arrangement of a switched exciter discharge circuit.

The user defines the following parameters of the system in order to develop a customized unit for an exciter discharge application:

  • Maximum discharge current from the field coil
  • Required protection voltage under discharge conditions
  • Energy stored in the field coil

Considerations for the protection voltage and energy to be dissipated must also be made regarding the three-phase short-circuit currents, which can be up to three times the level of the maximum discharge current.

A suitable unit may then be defined by the Metrosil engineers. Many units employ 150 mm diameter discs, which are coupled in series and parallel arrangements, based on the necessary electrical parameters. The number of discs and their thickness is dependent on the application details.

Metrosil exciter discharge units

Metrosil exciter discharge units arranged in parallel in a large hydro power system.

Alternative Exciter Discharge Systems

Customized units suitable for brushless and permanently connected exciter discharge systems – as employed on smaller synchronous generators – can be provided. A wider range of parameters should be considered in these applications, including:

  • The mechanical stability of the unit
  • Leakage current considerations
  • Power dissipation under normal operating conditions

Metrosils installed on a generator with a brushless excitation system

Metrosils installed on a generator with a brushless excitation system.

spaced Metrosil unit

A spaced Metrosil unit as used in a permanently connected static exciter discharge system.

Metrosil unit

Large static excitation system showing Metrosil unit mounted from the cabinet ceiling.

Related Posts

Applications e-Blog

Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

21.5.2022
29
Automotive

Stackpole Presents High Current Metal Shunt Resistors

19.5.2022
11
Aerospace & Defence

Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

19.5.2022
14

Popular Posts

  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.