• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication
Technician checks the electronic device. Printed circuit board for the robot.

Capacitors for Medical Applications: Component Selection Considerations

19.12.2019

Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

31.5.2023

TT Electronics Unveils Busbar Shunt Resistors

31.5.2023

Bourns Releases New Power NTC Thermistors

31.5.2023

KYOCERA Developed Industry Leading 008004 Hi-Q MLCC for PA Modules

31.5.2023

MLCC Suppliers Reduced Production Capacity in 1H23 due to Weak Consumer Market Demand

29.5.2023

Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

25.5.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    TT Electronics Unveils Busbar Shunt Resistors

    Bourns Releases New Power NTC Thermistors

    KYOCERA Developed Industry Leading 008004 Hi-Q MLCC for PA Modules

    MLCC Suppliers Reduced Production Capacity in 1H23 due to Weak Consumer Market Demand

    Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

    Murata Unveils Compact MLCCs with Extended Creepage Distance

    Properties and Characteristics of Crystal Units

    YAGEO Releases High Capacitance 630V NP0 MLCC for Higher Power Density and Efficiency Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    TT Electronics Unveils Busbar Shunt Resistors

    Bourns Releases New Power NTC Thermistors

    KYOCERA Developed Industry Leading 008004 Hi-Q MLCC for PA Modules

    MLCC Suppliers Reduced Production Capacity in 1H23 due to Weak Consumer Market Demand

    Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

    Murata Unveils Compact MLCCs with Extended Creepage Distance

    Properties and Characteristics of Crystal Units

    YAGEO Releases High Capacitance 630V NP0 MLCC for Higher Power Density and Efficiency Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Capacitors for Medical Applications: Component Selection Considerations

19.12.2019
Reading Time: 5 mins read
Technician checks the electronic device. Printed circuit board for the robot.

Technician checks the electronic device. Printed circuit board for the robot.

0
SHARES
148
VIEWS

Murray Slovick published an overview on TTI MarketEye on capacitor selection considerations for medical application.

Capacitors for Medical Applications: Component Selection Considerations

Within the medical industry, electronics are finding their way into more applications, from large, imaging equipment down to smart tags for surgical packs. On these pages, MarketEYE contributor Dennis Zogbi has forecast that the global medical technology market will reach $515 billion by 2022 to support aging populations and emerging economies.

RelatedPosts

Exploring Frenetic and Maxwell Options for an Optimal Transformer Performance in LLC Circuit

TT Electronics Unveils Busbar Shunt Resistors

Bourns Releases New Power NTC Thermistors

The medical devices industry is one of the most highly regulated sectors in the world; its regulating bodies include the International Standards Organization (ISO) and the U.S. Food and Drug Administration (FDA). These regulations, as well as the demands placed on electronic medical devices, have ramifications for the component selection process. In this article we will explore those impacts given that tantalum capacitors and multilayer ceramic capacitors (MLCCs) are the most popular types of capacitors for medical applications.

Regulatory Standards

Globally, the primary standard governing medical device design is formally known as IEC 60601-1, “Medical electrical equipment – Part 1: General requirements for basic safety and essential performance.” The European (EN 60601-1) and Canadian (CSA 60601-1) versions of the standard are identical to the IEC standard. IEC 60601-1 is a type test standard, not a standard for process certification. Consequently, it applies to a device design rather than a manufacturer’s processes.

The FDA regulates all medical devices marketed in the US, which are grouped into three broad classes depending on the device’s risk, invasiveness, and impact on the patient’s overall health. These classes are as follows:

  • Class I – Lowest Risk: Examples of Class I devices include manual toothbrushes and reusable surgical scalpels. Class I devices are subject to far fewer regulatory requirements than Class II or III devices.
  • Class II – Moderate Risk: Class II electronics include test and scan equipment. A non-invasive blood pressure monitor is an example of a Class II device.
  • Class III – Highest Risk: Devices that are inserted into the human body, including permanent implants, smart medical devices and systems such as pacemakers and defibrillators.

Capacitor Choices

Passive components have an important role in medical systems and are part of diagnostic, imaging, patient monitoring, and pharmaceutical delivery and dispensing applications. In particular, implantable medical electronic devices are usually powered by batteries or capacitors that have to be removed from the body after completing their function due to their non‐biodegradable properties.

Capacitors are employed for use in implantable medical devices such as defibrillators, insulin pumps and pacemakers, as well as in portable and wearable devices (including electrocardiograms, ultrasonic echo devices and blood gas analyzers). They are required to have high reliability, offer long service life and pass stringent screening checks.  Meeting customer demand today often also means miniaturization and advancements in capacitor materials and design.

Tantalum capacitors are used in most of the pacemakers and defibrillators manufactured each year. There are many reasons to choose tantalum, including their inherent reliability, self-healing capabilities (tantalum capacitors have low resistance paths through the dielectric which can self-heal, repairing the potential fault site), and their ability to pack high capacitance values into small case sizes.

MLCCs are attractive for medical devices because they are usually compact in size, offer high reliability and large capacity, and have predictable temperature coefficients. They also offer the most stable capacitance with respect to applied voltage.

Generally speaking, MLCCs are normally chosen for applications with capacitance ranges below 1 μF, and tantalum capacitors are selected for applications with capacitance values above 10 μF. In between (the 1–10 μF range), choices depend on relative size, requirements for capacitance stability over temperature and voltage, and rated voltage capability.

As MLCC technology can go to much smaller dimensions, MLCCs can be manufactured in case sizes that are not practical for tantalum capacitors while solid tantalum capacitors with MnO2 cathodes are attractive because they have no wear out mechanism. For tantalum capacitors, DC leakage current (DCL) is one of the most important electrical parameters. Compared to ceramic capacitors, tantalum capacitors have high leakage currents. The DCL of a tantalum capacitor also increases with an increase in temperature.

Capacitors fail due to various factors, including manufacturing processes and design defects such as cracks and voids that occur during production, materials that wear out, operating temperature, voltage, current, humidity and mechanical stress. These internal flaws can result in leakage instability, increased leakage current or even catastrophic dielectric breakdown. Some of the factors that can accelerate these defects include product assembly, thermomechanical stress and how the device is used. Frequently, failures can be attributed to the degradation of a given material. For example, thin layers of silicon dioxide are used as a dielectric for capacitors or as the gate oxide for a MOS semiconductor device. Time Dependent Dielectric Breakdown (TDDB) failures of capacitors occur due to the degradation of this insulation material.

Reliability assessment is an essential process in the production of components and electronic devices. Life Data Analysis predicts how products will operate throughout their lifetimes by analyzing data from a sample set of failures. In particular, the Weibull reliability assessment method – a mathematical technique frequently used to analyze various types of life data in order to predict failure rates based on studying sample behavior – is commonly used by capacitor manufacturers to assess reliability.

Usage Considerations

Among the sterilization methods available for high-volume medical devices is gamma radiation from Cobalt-60, a radioisotope which continuously emits gamma rays. During sterilization, gamma rays efficiently eliminate microorganisms from the medical device. From a circuit applications standpoint, however, the most important effect of radiation on a capacitor is the induced conductivity in the dielectric material. When exposed to ionizing radiation, capacitor leakage resistance decreases; as such, radiation can degrade the electrical performance of the part.

Dimensional change of the capacitor plate spacing is the principal cause of capacitance changes during irradiation. This change is due to pressure buildup from gas evolution and swelling which results in physical distortion of capacitor elements and thus changes the spacing. This dimensional change is most pronounced when radiation-sensitive materials, generally organics, like polystyrene, polyethylene terephthalate and polyethylene are used in one or more parts of the capacitor’s construction.

Changes in organic materials due to radiation are more pronounced, and so these are less satisfactory in a radiation environment than those capacitors employing inorganic dielectrics. Electrolytic capacitors (aluminum and tantalum) are capable of extended radiation exposure, with tantalum being more radiation-resistant.

One More Choice

While choosing the right capacitor for a medical application is not a trivial task, engineers will find online component selectors and circuit configurators readily available to help locate parts by product family, application or key parameters.

You also need to choose the right supplier. An experienced supplier can advise your design team early in the development process to avoid costly mistakes and find components that meet demanding specifications. The best way to ensure that components are standards compliant is by sourcing directly from suppliers or from authorized distributors.

Source: TTI MarketEye

Related Posts

Capacitors

KYOCERA Developed Industry Leading 008004 Hi-Q MLCC for PA Modules

31.5.2023
18
Market & Supply Chain

MLCC Suppliers Reduced Production Capacity in 1H23 due to Weak Consumer Market Demand

29.5.2023
71
Capacitors

Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

25.5.2023
49

Upcoming Events

Jun 1
June 1 @ 12:00 - June 2 @ 14:00 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Jun 13
June 13 @ 12:00 - June 16 @ 14:00 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Jun 14
11:00 - 12:00 CEST

STRETCH.flex 2.0 Stretchable PCB Technology to the Limits

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.