• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Extension of the space qualified MLCC’s ranges

3.1.2023

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023

Flying Capacitors Explained

17.3.2023

TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

16.3.2023

ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

16.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Extension of the space qualified MLCC’s ranges

3.1.2023
Reading Time: 74 mins read
0 0
0
SHARES
253
VIEWS

Source:source: Exxelia – Capacitors GBU,France; ESA SPCD 2018 Symposium

EPCI e-symposium library article

RelatedPosts

Exxelia MML High Energy Film Capacitors for Space Applications

Miniaturization of High Voltage MLCC for Space Applications

Novel Nitrogen Doped Graphene Material for High Energy Storage Supercapacitors

Miniaturization is a driving need for space applications. This need gives rise to the Surface Mounting Devices trend which allows to manufacture more and more compact equipment which at last are cheaper to produce and put on orbit.

But this evolution, which is true whatever the application is, implies some modifications in the manufacturing process of the ceramic chips capacitors and in the based material used to manufacture them. Two options have been considered by Exxelia to enable multilayer ceramic capacitors to withstand these new constraints:

  • To design smaller capacitors (down to size 0402) and lowest rated capacitors (down to 10V), what means a complete work on the design rules and the manufacturing process of these products. The main challenge consists in reducing the dielectric thickness considered to manufacture the parts and to guarantee in the same way a sufficient reliability of these thin layers.
  • To design alternative components with reduced losses in order to minimize heating. As losses are mainly due to the ceramic dissipation factor, such a choice implies a complete change of the ceramic dielectric. This second possibility lead up Exxelia Technologies to evaluate a new ceramic capacitors range based on a new dielectric material called C48X.

published by EPCI under approval of ESA SPCD 2018 organizing committee.


Title: Extension of the space qualified MLCC’s ranges
Author(s): Dr. Henri Laville(1), Maud Fabre(1)
Organisation(s): (1)Exxelia – Capacitors GBU, Z.A.E. du Clos du Chêne – 1, rue des temps modernes, F-77600 CHANTELOUP en Brie – France
Symposium: ESA SPCD 2018
Reference: Evaluation and Qualification 3.
ISBN: N/A
e-Sessions Applications: Aerospace
e-Sessions Scope Components: Capacitors
e-Sessions Topics: Technology, Specification & Qualification


QUALIFICATION OF THE SIZE 0402 AND OF THE 10V RANGE

Technical Constraints
As a reminder, Exxelia already introduced in the QPL a full range of ceramic chips capacitors, from sizes 0603 to 2220, from 16V to 100V.

Exxelia went further and decided to qualify the size 0402 and the 10V range.

The qualification of these two new ranges has implied :

  • To work on the design rules of the capacitors and in particular on the reduction of the dielectric thickness.
  • To work on the manufacturing process in order to guarantee the reliability of these thin ceramic layers.
  • To develop new equipments for the metallization (Figure 1) and the control of these very small capacitors.

Accessible ranges
Different configurations of terminations have been considered for this qualification:

  • Ag/Pd/Pt termination
  • Nickel barrier + Sn/Pb 60/40
  • Nickel barrier + Gold
  • Polymer + nickel barrier + Sn/Pb 60/40 or Gold : This polymer termination includes a soft layer which acts as a “stresses buffer” and prevent the chips cracking.
page2image2762703600
Fig.1. Flexible termination drawing
 

Qualification program

The qualification tests have been performed with the help of the French space agency (CNES) and are described in the generic specification ESCC n°3009 (Figure 2).

page2image2762704512

Figure 2 : Description of the qualification tests performed

The qualified ranges are detailed in the Figure 3.

page3image2832706048

Figure 3 : New qualified ranges

EVALUATION OF THE NEW C48X CERAMIC

Technical Constraints

Two classes of dielectric are mainly used to manufacture ceramic capacitors. The first class is mainly composed of NPO ceramics. These ceramics are mainly made of titanium dioxide with a low dielectric constant (εr ≤ 100). These ceramics are very stable with only minor changes under stresses of temperature, voltage and frequency.

The second class is composed of X7R ceramics. These ceramics are mainly made of barium titanate with perovskite structure and have a high dielectric constant (1000 ≤ εr ≤ 5000). The counterpart is that these ceramics present some noticeable variations under temperature, voltage and frequency

With the aim of changing the dielectric material used to manufacture Exxelia high voltage ceramic capacitors, what was Exxelia’s first goal, it was obviously necessary to use a ceramic whose performances would allow to:

  • Develop ranges with the same capacitance / voltage / volume characteristics than the X7R dielectrics
  • Dissipate less energy than X7R materials, what means selecting a dielectric with a dissipation factor much lower than X7R’s dissipation factor –which is typically for high voltage parts equal or greater than 50.10-4.

Our choice has been a dielectric with an intermediate dielectric constant value (about 450). This material can be processed using a greater voltage gradient (ratio of voltage and dielectric thickness) than X7R dielectrics so that its capacitance per volume could be comparable with the capacitance per volume of an X7R material.

Dielectric Performances

The main characteristics of the selected material which combines most of the advantages of NPO and X7R materials are summarized in Table 1.

Table 1 : Main characteristics of “C48X” material

The dielectric constant of this ceramic, smaller than the dielectric constant of classical X7R materials, enables to manufacture about half the capacitance of X7R ranges when measured under standardized measurement conditions (Figure 4), what, at a first glance, appears, of course, to be a limitation.

page4image2832884304

Figure 4 : Comparison of capacitance ranges in the same size package for NPO, C48X and X7R

But this dielectric is very stable under voltage. The loss of capacitance versus dc voltage is only a couple of % (Figure 6) when it’s about 60% or more for classical X7R (2R1) ranges.

page4image2832885216

Figure 5 : capacitance change of C48 versus dc voltage

So, when looking at the capacitance value left under nominal voltage (working voltage), a simple calculation demonstrates it’s the same when using this ceramic and when using a X7R ceramic dielectric.

Furthermore the dissipation factor is very low, typically less than 0.05% what makes the heat dissipation in use not significant.

Under working conditions the capacitance values of this new range of products are equivalent to X7R values with the unrivaled advantage of no heat dissipation. Opposite to X7R, the C48X capacitors don’t suffer atemperature increase, what makes them more reliable.

… read more in the full paper link below. 

CONCLUSION

The on-going evaluation and qualifications of ranges based on C48X material have been performed in order to answer to the increasing need of miniaturization of our customers.

The results obtained are fully compliant with our expectations and will enable to complete our existing space offer.

In addition, Exxelia pursues his efforts and continues to propose new ranges for next qualifications, with the help of CNES.


read the full technical paper in pdf here:

and presentation here:

Related Posts

Capacitors

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023
40
Capacitors

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023
14
Market & Supply Chain

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
14

Upcoming Events

Mar 19
March 19 - March 23

APEC 2023

Mar 22
14:00 - 15:00 CET

Parasitic Components in Power Converters – Fundamentals and Measurements Rohde & Schwarz Webinar

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.