• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Decoupling and Filtering Capacitors Guideline

20.4.2022

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

16.5.2022

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

16.5.2022

European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

16.5.2022

Tecate Releases Small-Cell 3V Supercapacitors

16.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Supercapacitors Assist Diesel Locomotives Start At Winter Conditions

    Bourns Releases High Current Shielded Power Inductor in Compact Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Supercapacitors Assist Diesel Locomotives Start At Winter Conditions

    Bourns Releases High Current Shielded Power Inductor in Compact Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Decoupling and Filtering Capacitors Guideline

20.4.2022
Reading Time: 6 mins read
0 0
0
SHARES
3.9k
VIEWS

by Wilmer Companioni. Decoupling and filtering are two of the main capacitor functionality circuit type. The following article by Kemet explains the basic considerations and selection guide for choosing the right capacitors.

Introduction

RelatedPosts

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

Decoupling and filtering are two sides of the same coin. Like most things engineering, it is the subtleties of use that determine the ultimate function. It is the reactive nature of capacitors that enable them to act as filtering and decoupling elements. Their impedance changes as a function of frequency.

The capacitive reactance, Xc, is itself the capacitor’s portion of the frequency-dependent element of impedance, as shown below.

The impedance is larger at lower frequencies, which means that high frequency signals pass through these elements easier. This is beneficial for both decoupling and filtering applications, but in slightly different ways.

Decoupling

Decoupling capacitors act as local energy reservoirs to prevent the IC from experiencing a voltage drop. This is useful when multiple parts of the circuit are pulling from the same power supply at the same time, and they cannot all be supported. This prevents RC delays that could be caused from the voltage drooping. With decoupling capacitors, the different stages in the circuit do not have to wait to receive the power that they need because there is an extra supply held by the capacitor. Ideal circuit design is one the uses small value capacitors to handle short-term, fast transients and larger value capacitors for slower transients.

Choosing the right capacitor(s)

Choosing the right capacitor for decoupling is the next step. Since decoupling capacitors are going to allow the noise that lies near the self-resonant frequency to pass, it is valuable to know the frequency of the noise. This solution can be a single capacitor, or several capacitors placed in a bank. When choosing capacitors to place in a bank, there are two options; multiples of the same capacitor or different values. Using the first of these two methods widens the impedance bandwidth, reduces the ESR, and lowers the physical inductance. Using the link below will take you to KEMET’s KSIM tool which can allow you to compare the ESR/impedance of different capacitors or using several capacitors together in parallel.

http://ksim.kemet.com/

Figure 1 compares the ESR and impedance of 1 (top right plot), 10 (middle plot), and 100 (bottom left plot) of the same capacitors placed in parallel.

Figure 1: Same Capacitors in Parallel – ESR/Impedance Comparison

The bandwidth decreases and widens as more capacitors are added and since each capacitor has an ESR and inductance aspect, the combined ESR and inductance also decreases as more are added in parallel. It should be noted that equal capacitors in parallel does not alter the series resonant frequency.

Cascading different capacitors has the same effects as previously mentioned. The difference lies in widening the low impedance bandwidth. By adding different capacitors in parallel, the curve does not keep its same shape but can maintain a lower ESR at a larger range of frequencies as shown in Figure 2.

Figure 2: Different Capacitors in Parallel – ESR/Impedance Comparison

The important parameter to be aware of is the target impedance across the desired frequencies. The formula in Figure 2 can help calculate the target impedance specific to the application parameters. Since different parts have various self-resonant frequencies, adding different parts in parallel will keep the impedance low depending on their self-resonant frequency values.

KSIM

Click here to access KSIM and enter in the parts you would like to put in parallel. Add more parts using the Add Another Part Number at the bottom left of the page, see Figure 3.

Figure 3: KSIM Add Another Part Number
Figure 4: KSIM Using Multiples of the Same Part Number

Use the numbers next to the part number to increase the quantity instead of entering in the same part twice if you choose to use multiple of the same part.

When you have all the parts you wish to use, check the Yes box under Calculate Z on the bottom right and click on Combined at the top right under the Part Numbers header.

Figure 5: KSIM Combining Impedances

This will give you the projected impedance and ESR plots across a range of frequencies. You can also note the Controls and Parameters box at the bottom which will let you specify the temperatures and bias voltage that your application may have.

Filtering

Filtering capacitors are those that pass desired frequencies forward to other stages of the circuit while attenuating unwanted frequencies. These capacitors should be placed near the output of the stages of the circuit. Depending on how the capacitors are placed in the circuit, they can filter higher or lower frequencies. A series connection will pass high frequencies to the following stage while a parallel connection will shunt the high frequencies to ground allowing the lower frequencies to pass into the following stage.

Choosing the right capacitor(s)

Table 1 will help in choosing which dielectric to begin with. Matching the self-resonant frequency of the capacitor with the switching frequency of the circuit will maximize the efficiency. You can do this by using the KSIM tool that was shown previously.

Table 1: Choosing a Capacitor Dielectric for Filtering

Conclusion

Decoupling and filtering are two of the most common uses of capacitors. It can be tempting to use the two terms interchangeably but in doing so, some of the key elements of usage can be overlooked. Decoupling is when capacitors are used as on-demand energy supplies for voltage transients of various lengths. Filtering is the practice of blocking or permitting frequencies in circuit stages. Whether decoupling or filtering, KEMET has the solutions necessary for both. Visit our simulation tool K-SIM to investigate capacitor behavior and visit ComponentEdge to find the capacitor right for you.

Source: KEMET

Related Posts

Capacitors

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

16.5.2022
3
Aerospace & Defence

Tecate Releases Small-Cell 3V Supercapacitors

16.5.2022
3
Automotive

TDK to Build New Automotive MLCC Production Plant in Japan

10.5.2022
109

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Introduction to Capacitor Based Power Factor Correction Circuits

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.