• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Making the Internet of Things possible with a new breed of memristors

11.1.2018

Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

26.5.2022
Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

26.5.2022

Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

26.5.2022

Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

25.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

    Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

    Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

    Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

    Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

    A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology

    Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

    TDK Introduces Improved Performance PFC Capacitors

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

    Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

    Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

    Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

    Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

    A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology

    Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

    TDK Introduces Improved Performance PFC Capacitors

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Making the Internet of Things possible with a new breed of memristors

11.1.2018
Reading Time: 3 mins read
0 0
0
SHARES
9
VIEWS

source: Phys.org article

The Internet of Things is coming, that much we know. But not without components and chips that can handle the explosion of data that comes with IoT. In 2020, there will be 50 billion industrial internet sensors in place. A single autonomous device – a smartwatch, a cleaning robot, or a driverless car – can produce gigabytes of data each day, whereas an airbus may have over 10,000 sensors in one wing alone.

RelatedPosts

Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

Two hurdles need to be overcome. First, current transistors in computer chips must be miniaturized to the size of only few nanometres, a huge thermodynamic challenge; second, analysing and storing unprecedented amounts of data will require equally huge amounts of energy. Sayani Majumdar, Academy Fellow at Aalto University, along with her colleagues, is designing technology to tackle both issues.

Majumdar has with her colleagues designed and fabricated the basic building blocks of future components in what are called “neuromorphic” computers inspired by the human brain. It’s a field of research on which the largest ICT companies in the world and also the EU are investing heavily. Still, no one has yet come up with a nanoscale hardware architecture that could be scaled to industrial manufacture and use.

“The technology and design of neuromorphic computing is advancing more rapidly than its rival revolution, quantum computing. There is already wide speculation both in academia and company R&D about ways to inscribe heavy computing capabilities in the hardware of smart phones, tablets and laptops. The key is to achieve the extreme energy-efficiency of a biological brain and mimic the way neural networks process information through electric impulses,” explains Majumdar.

Basic components for computers that work like the brain

In their recent article in Advanced Functional Materials, Majumdar and her team report that they have fabricated a new breed of ferroelectric tunnel junctions, nanometre-scale ferroelectric thin films sandwiched between two electrodes. They have abilities beyond existing technologies and bode well for energy-efficient and stable neuromorphic computing.

The junctions work in low voltages of less than five volts and with a variety of electrode materials – including silicon used in chips in most of our electronics. They also can retain data for more than 10 years without power and be manufactured in normal conditions.

Tunnel junctions have up to this point mostly been made of metal oxides and require 700 degree Celsius temperatures and high vacuums to manufacture. Ferroelectric materials also contain lead which makes them – and all our computers – a serious environmental hazard.

“Our junctions are made out of organic hydro-carbon materials and they would reduce the amount of toxic heavy metal waste in electronics. We can also make thousands of junctions a day in room temperature without them suffering from the water or oxygen in the air,” explains Majumdar.

What makes ferroelectric thin film components great for neuromorphic computers is their ability to switch between not only binary states – 0 and 1 – but a large number of intermediate states, as well. This allows them to ‘memorise’ information not unlike the brain: to store it for a long time with minute amounts of energy and to retain the information they have once received – even after being switched off and on again.

These are called memristors. They are ideal for computation similar to that in biological brains. Take, for example, the upcoming Mars 2020 rover. For the Rover to process data on its own using only a single solar panel as an energy source, its unsupervised algorithms will need to use an artificial brain.

“What we are striving for now is to integrate millions of our tunnel junction memristors into a network on a one square centimetre area. We can expect to pack so many in such a small space because we have now achieved a record-high difference in the current between on and off-states in the junctions and that provides functional stability. The memristors could then perform complex tasks like image and pattern recognition and make decisions autonomously,” says Majumdar.

featured image: The probe-station device (the full instrument, left, and a closer view of the device connection, right) which measures the electrical responses of the basic components for computers mimicking the human brain. The tunnel junctions are on a thin film on the substrate plate. Credit: Tapio Reinekoski

Related Posts

Aerospace & Defence

Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

26.5.2022
36
A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology
Inductors

Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

24.5.2022
22
Capacitors

TDK Introduces Improved Performance PFC Capacitors

24.5.2022
34

Popular Posts

  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.