Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Unveils Next Gen BMS Isolation Transformers

    Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

    Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

    Bourns Releases SMD Chip High-Power Metal Strip Current Sense Resistors in 2010 Case

    Würth Elektronik Releases High-Frequency Connectors for Antenna Cables

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Unveils Next Gen BMS Isolation Transformers

    Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

    Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

    Bourns Releases SMD Chip High-Power Metal Strip Current Sense Resistors in 2010 Case

    Würth Elektronik Releases High-Frequency Connectors for Antenna Cables

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Maxwell dry-cell technology to boost Tesla batteries and simplify the manufacturing process

29.3.2019
Reading Time: 2 mins read
A A

Source: Power Electronics news

Tesla’s acquisition of Maxwell Technologies could be a game-changer in the EV and energy storage industry. The reported all-stock, US$218-million deal is expected to be finalized in Q2, 2019. Maxwell Technologies is a pioneer in the design and manufacture of the high-power-density ultra-capacitors. It has a lot of opportunities in the transportation, industrial and consumer markets. Core megatrends driving Maxwell’s values include integration of renewable energy into the grid, electrification of ICE and accelerating EV growth, which fits like a glove into Tesla’s energy strategy, according to Frost & Sullivan.

RelatedPosts

YAGEO Unveils Next Gen BMS Isolation Transformers

Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

Tesla Model 3 currently has an energy density at the cell level of 210 Wh/kg and at the battery pack level of 275 Wh/liter. Maxwell claims that its patented dry-cell electrode can produce energy density of over 300 Wh/kg, a 42.8% increase. The planned energy density of over 500 Wh/kg would be a 138% increase over Tesla’s current batteries. Such a boost in the energy density will be a breakthrough in the EV industry as it can propel Tesla cars from the current range of 220 miles to around 375 miles. The result of applying Maxwell’s dry-cell technology would be a simplified manufacturing process that can lead to 10-20% cost reduction with better battery life (up to 2x).

Frost & Sullivan feels that the acquisition offers the following benefits to Tesla:

  • Pairing Tesla’s Powerpack with Maxwell’s ultra-capacitor storage systems for utility-scale applications such as primary frequency response and grid stabilization.
  • Automotive applications — start-stop, regenerative braking, and actuated power.
  • The dry electrode manufacturing process, which is an environment friendly process without solvents, will improve battery performance, including energy density and range, while cutting down manufacturing costs.

So what impact will this acquisition have on Tesla’s partnership with Panasonic?

There are clear signs that Tesla is looking to diversify in terms of battery suppliers to reduce its dependency on Panasonic. In addition to acquiring Maxwell, the company is already in talks with several Chinese battery manufacturers for local battery sourcing to cater to vehicles manufactured at Gigafactory 3. Meanwhile, Panasonic has inked a deal with Toyota for the manufacture of rectangular prismatic batteries that it aims to sell to other OEMs such as Honda. Frost & Sullivan feels that while the Tesla move is a temporary blow for Panasonic, the exclusive partnership for the Gigafactory at the Nevada plant is expected to keep Panasonic in play.

Frost & Sullivan believes that the acquisition will be a boost for Tesla as it is buying a company whose goals align with its vision. Tesla is also acquiring Maxwell’s experienced technical and manufacturing team, which is capable of making important advancements in the EV and storage industry. Given that Elon Musk already has a background in ultra-capacitors, Tesla is likely to commercialize the dry electrode manufacturing technology sooner than expected. This will have potential synergies for the company, further cementing its position in the lucrative EV business.

Related

Recent Posts

YAGEO Unveils Next Gen BMS Isolation Transformers

10.7.2025
7

Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

10.7.2025
8

Bourns Releases SMD Chip High-Power Metal Strip Current Sense Resistors in 2010 Case

10.7.2025
6

Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

8.7.2025
7

VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

7.7.2025
36

Exxelia Unveils Advanced Components for the Medical Device Industry

9.7.2025
45

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

1.7.2025
24

SCHURTER Unveils High Voltage Fuses for EV Applications

30.6.2025
10

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
50

Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

30.6.2025
23

Upcoming Events

Jul 16
16:00 - 17:00 CEST

Design a 2kW PSFB converter before your cold drink gets warm

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version