Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Bourns Release Automotive 4-Terminal Shunt Resistors

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

    Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Bourns Release Automotive 4-Terminal Shunt Resistors

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

    Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Minimize Restrikes When Switching Capacitor Banks

15.3.2019
Reading Time: 3 mins read
A A
Silhouette of transformers over yellow sunset sky

Silhouette of transformers over yellow sunset sky

Source: T&D World article

by: Southern States. High power transmission reliability considerations when switching capacitor banks. Minimize or eliminate restrikes when de-energizing capacitor banks.

RelatedPosts

Wk 42 Electronics Supply Chain Digest

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

September 2025 ECIA US Components Sales Sentiment Continues in Optimism

Restrikes or re-ignitions occur when the dielectric strength of the open gap, during contact parting, is not great enough to withstand the recovery voltage across the open gap. With a capacitive load, the current waveform leads the voltage waveform by 90°. The current is interrupted close to the zero crossing when the voltage is at its maximum value. The supply side voltage is relatively unaffected following the interruption, but the voltage of the capacitor bank becomes trapped maintaining the peak voltage level (very low rate of decay) that was present at the time of current interruption.The initial low rate of rise of the recovery voltage and the low level of current being switched make it easy for the switching device to interrupt.

Since the level of the currents being switched are low, the switching device, which is often a general purpose device such as a power circuit breaker or vacuum interrupter, may interrupt the current at a point where the contact separation and parting speed is not sufficient to withstand the voltage difference across the contacts leading to a restrike and the resumption of current flow. Single restrike overvoltages can approach 3 PU.

 

Restrikes cause cascading overvoltages that can lead to: Ruptured capacitor cans, Blown Fuses, Failed Arrestors, External equipment flashovers, and contact wear that may lead to interrupter dielectric failures.

Minimize Voltage and Current Transients when Energizing capacitor banks

When a capacitor bank is energized, there is an immediate drop in system voltage toward zero, followed by a fast voltage recovery that is superimposed on the system 60 Hz fundamental waveform. This recovery voltage can reach a peak of 2.0 p.u. at frequencies between 300 Hz and 1000 Hz.

While these transients are not typically harmful to utility equipment, they may be troublesome to some customers’ sensitive equipment. The transients often show up a significant distance from the capacitor bus as the high frequency transients pass through transformers and are magnified by capacitor banks located on the distribution system or the at the customers location. The resulting over-voltages can cause nuisance tripping of adjustable speed drives, computer network problems, as well as customer equipment damage or failure. It is generally accepted that transients maintained below about 1.2 p.u. will not impact the customer. Some form of control is necessary to achieve this performance.

When capacitor banks are installed in a back-to-back arrangement (two or more capacitors close to each other), the energization of the second bank looks like a short circuit to the first bank. This causes the first capacitor bank to discharge into the second capacitor bank resulting in high inrush currents. These in-rush currents can reduce the life of the capacitor switching device. On grounded capacitor banks, transient currents may flow in the ground mat causing potential problems with electronic equipment in the substation because of induced voltage in the control voltage supply.

A Special Purpose Solution for Switching Capacitor Banks

The use of a product designed specifically for an application is often the most economical and effective solution. This holds true when switching shunt capacitor banks, as the use of general purpose switching devices, often requiring the application of arrestors, inrush reactors, POW Switching controls, or pre-insertion inductors, can potentially affect performance efficiency, cause increased maintenance and reduce cost effectiveness.

Utilizing closing resistors to minimize voltage transients and inrush currents has become a widely accepted methodology for effective and reliable capacitor bank switching. One field proven approach, developed by Southern States, has been the use of a two-stage switching device, which momentarily introduces an inductance into the circuit, along with an interrupter designed specifically for interrupting capacitive currents.

Related

Recent Posts

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

20.10.2025
4

Bourns Release Automotive 4-Terminal Shunt Resistors

17.10.2025
15

Bourns Releases High Inductance Common Mode Choke

16.10.2025
16

Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

16.10.2025
10

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
21

Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

15.10.2025
21

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
37

YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

13.10.2025
133

KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

13.10.2025
24

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
62

Upcoming Events

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version