Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases Long Life SMT nano and microSD Card Connectors

    Glass Core Technology Breakthrough Potential for High-Speed Interconnects

    YAGEO Releases High Isolation Transformer for 1500VDC Applications

    Bourns Releases 1500VDC Power Fuse for Photovoltaic Applications

    Murata Releases Worlds First Molded Thermistor with Wire-Bonding

    Vishay Extends Axial Wirewound Resistors with WSZ Lead Form

    Smoltek CNF-MIM Capacitor Commercialization Update

    Bourns Unveils Automotive Thick Film on Steel

    TT Electronics Releases Failsafe and High Surge SMD MELF Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases Long Life SMT nano and microSD Card Connectors

    Glass Core Technology Breakthrough Potential for High-Speed Interconnects

    YAGEO Releases High Isolation Transformer for 1500VDC Applications

    Bourns Releases 1500VDC Power Fuse for Photovoltaic Applications

    Murata Releases Worlds First Molded Thermistor with Wire-Bonding

    Vishay Extends Axial Wirewound Resistors with WSZ Lead Form

    Smoltek CNF-MIM Capacitor Commercialization Update

    Bourns Unveils Automotive Thick Film on Steel

    TT Electronics Releases Failsafe and High Surge SMD MELF Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Minimize Restrikes When Switching Capacitor Banks

15.3.2019
Reading Time: 3 mins read
A A
Silhouette of transformers over yellow sunset sky

Silhouette of transformers over yellow sunset sky

Source: T&D World article

by: Southern States. High power transmission reliability considerations when switching capacitor banks. Minimize or eliminate restrikes when de-energizing capacitor banks.

RelatedPosts

Würth Elektronik Releases Long Life SMT nano and microSD Card Connectors

Glass Core Technology Breakthrough Potential for High-Speed Interconnects

YAGEO Releases High Isolation Transformer for 1500VDC Applications

Restrikes or re-ignitions occur when the dielectric strength of the open gap, during contact parting, is not great enough to withstand the recovery voltage across the open gap. With a capacitive load, the current waveform leads the voltage waveform by 90°. The current is interrupted close to the zero crossing when the voltage is at its maximum value. The supply side voltage is relatively unaffected following the interruption, but the voltage of the capacitor bank becomes trapped maintaining the peak voltage level (very low rate of decay) that was present at the time of current interruption.The initial low rate of rise of the recovery voltage and the low level of current being switched make it easy for the switching device to interrupt.

Since the level of the currents being switched are low, the switching device, which is often a general purpose device such as a power circuit breaker or vacuum interrupter, may interrupt the current at a point where the contact separation and parting speed is not sufficient to withstand the voltage difference across the contacts leading to a restrike and the resumption of current flow. Single restrike overvoltages can approach 3 PU.

 

Restrikes cause cascading overvoltages that can lead to: Ruptured capacitor cans, Blown Fuses, Failed Arrestors, External equipment flashovers, and contact wear that may lead to interrupter dielectric failures.

Minimize Voltage and Current Transients when Energizing capacitor banks

When a capacitor bank is energized, there is an immediate drop in system voltage toward zero, followed by a fast voltage recovery that is superimposed on the system 60 Hz fundamental waveform. This recovery voltage can reach a peak of 2.0 p.u. at frequencies between 300 Hz and 1000 Hz.

While these transients are not typically harmful to utility equipment, they may be troublesome to some customers’ sensitive equipment. The transients often show up a significant distance from the capacitor bus as the high frequency transients pass through transformers and are magnified by capacitor banks located on the distribution system or the at the customers location. The resulting over-voltages can cause nuisance tripping of adjustable speed drives, computer network problems, as well as customer equipment damage or failure. It is generally accepted that transients maintained below about 1.2 p.u. will not impact the customer. Some form of control is necessary to achieve this performance.

When capacitor banks are installed in a back-to-back arrangement (two or more capacitors close to each other), the energization of the second bank looks like a short circuit to the first bank. This causes the first capacitor bank to discharge into the second capacitor bank resulting in high inrush currents. These in-rush currents can reduce the life of the capacitor switching device. On grounded capacitor banks, transient currents may flow in the ground mat causing potential problems with electronic equipment in the substation because of induced voltage in the control voltage supply.

A Special Purpose Solution for Switching Capacitor Banks

The use of a product designed specifically for an application is often the most economical and effective solution. This holds true when switching shunt capacitor banks, as the use of general purpose switching devices, often requiring the application of arrestors, inrush reactors, POW Switching controls, or pre-insertion inductors, can potentially affect performance efficiency, cause increased maintenance and reduce cost effectiveness.

Utilizing closing resistors to minimize voltage transients and inrush currents has become a widely accepted methodology for effective and reliable capacitor bank switching. One field proven approach, developed by Southern States, has been the use of a two-stage switching device, which momentarily introduces an inductance into the circuit, along with an interrupter designed specifically for interrupting capacitive currents.

Related

Recent Posts

YAGEO Releases High Isolation Transformer for 1500VDC Applications

12.6.2025
10

Bourns Releases 1500VDC Power Fuse for Photovoltaic Applications

12.6.2025
7

Vishay Extends Axial Wirewound Resistors with WSZ Lead Form

12.6.2025
9

Smoltek CNF-MIM Capacitor Commercialization Update

11.6.2025
13

Bourns Unveils Automotive Thick Film on Steel

11.6.2025
26

TT Electronics Releases Failsafe and High Surge SMD MELF Resistors

10.6.2025
12

Understanding Switched Capacitor Converters

9.6.2025
50

DigiKey Offers Zephyr Operating System Workshop and Training Videos

6.6.2025
17

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
28

YAGEO Unveils PulseChip LAN Transformer

6.6.2025
16

Upcoming Events

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version