• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Minimizing Temperature Drift in Your Current Measurement by Resistive Gain Network

14.8.2017

Flex Suppressor Explained and its Applications

24.3.2023

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

23.3.2023

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Minimizing Temperature Drift in Your Current Measurement by Resistive Gain Network

14.8.2017
Reading Time: 5 mins read
0 0
0
SHARES
971
VIEWS

source: Electronic Design article

Dan Harmon | Aug 11, 2017 Use a current-sense amplifier that integrates a precisely matched, resistive gain network to minimize the temperature-drift effects of the gain error.
As more systems become electrified, thermal management has turned into one of the “hottest” issues facing designers. Using current measurements for thermal management is a leading indicator of system performance and faults, whereas simply monitoring the temperature is potentially a lagging indicator. Accurately monitoring the current consumed, especially over temperature, has become vital as designers pack more functionality into tighter areas.

RelatedPosts

Flex Suppressor Explained and its Applications

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

While room-temperature calibration tends to be relatively straightforward, performing multi-temperature calibration is time-consuming and costly. Identifying ways to minimize the effects of temperature on current measurements can improve system performance and minimize system design margins, as well as potentially lower the total cost of ownership (TCO).

Sources of Error in Current Measurements

As I stated in my September 2015 article, “Mitigate Error Sources to Maximize Current-Measurement Accuracy,” there are multiple contributing sources of error in current-measurement applications. In the article, I listed these sources of errors:

Amplifier-related errors:

  • Input offset voltage (VOS) and VOS drift
  • Common-mode rejection ratio (CMRR)
  • Power-supply rejection ratio (PSRR)
  • Gain error and gain drift

System errors:

  • Gain-setting network tolerance, matching, and drift
  • Printed-circuit-board (PCB) layout
  • Shunt-resistor tolerance and drift

You can see that “drift” is part of four of the seven items on both lists, which emphasizes the importance of minimizing the additional errors caused by temperature in a current-measurement implementation.

Discrete Current-Measurement Implementations

Many system designers choose a discrete amplifier and external gain network for their low-side current-measurement applications because it’s viewed as a low-cost alternative. There are two options when using a discrete circuit for low-side current sensing: a single-ended or differential configuration. Figure 1 shows the latter.

 1. This basic differential amplifier configuration is used for current measurement.

In either configuration, the gain of the system is defined as G = RF/RI. The worst-case initial (or room-temperature) gain error is simply the tolerance of the discrete gain resistors. Assuming an application with a gain of 20, where RF = 100 kΩ and RI = 5 kΩ, Table 1 reveals how that looks for different resistor tolerances.

To understand the effects of temperature, let’s assume the same gain implementation with nominal resistor values and then apply various standard temperature coefficients (tempcos). Tempcos are usually specified in terms of parts per million per degree Celsius (ppm/°C). To get from ppm to a percentage, simply divide by 10,000. Table 2 shows the calculation results for a variety of resistor tempcos.

The issue here is that the drift could be in opposite directions and different for each resistor, which means minimizing these temperature effects in gain errors requires multipoint calibration (as well as temperature monitoring) to enable temperature compensation in the system management controller. The additional circuitry and resources (calibration means people and time!) can significantly drive up the TCO. Plus, as the tempcos drop, the resistor becomes more expensive, and in turn drives up the TCO.

Calibration

As I mentioned, performing system calibration can minimize (or even eliminate) initial errors. Typical calibration occurs at the total system level and involves two-point calibration. Performing two-point calibration enables you to minimize the error at both low current levels (due to the offset of the system), as well as at higher current levels where gain error is the primary error source.

A video training series from Texas Instruments titled “Getting Started with Current Sense Amplifiers,” beginning with session 2.1, discusses this topic in detail. Equation 1 describes the transfer function of the system:
VOUT = (IL × RSHUNT × G) + VOFFSET               (1)

The intent of calibration is to identify the factors needed to correct for the amplifier’s offset voltage (VOFFSET), the gain error of the network (G), and the shunt resistor error (RSHUNT). Applying zero current calculates the necessary offset correction. Using a current close to the nominal load will calculate the total gain correction factor, accounting for both the shunt tolerance and amplifier gain network.

Minimizing the offset error is very straightforward—choose an amplifier with low VOS and low VOS drift. You will have to make a tradeoff between performance and cost. As discussed above, trying to perform two-point calibration at multiple temperatures to calculate the drift component of the offset error is costly and time-consuming.

Current-Sense Amps Integrate Precision Matched Gain Networks

Current-sense amplifiers are specialized integrated circuits designed specifically to measure current. As shown in Figure 2, these amplifiers have four fundamental benefits compared to a discrete implementation.

2. A current-sense amplifier offers several key benefits over a discrete current-sense implementation.

The benefit of the precision, matched gain-resistor network really manifests itself in how the gain error changes over temperature. The way the resistors are designed and fabricated on-chip enables near-perfect matching of both the initial error as well as the temperature drift. The absolute accuracy of the resistors isn’t a factor in minimizing gain error; what’s critical is how well they’re matched. If both RF and RI are off by 10% in the same direction (either plus or minus), then the ratio remains ideal and the gain error is zero.

3. This part of Texas Instruments’ INA180 product datasheet electrical specifications table shows offset and offset drift.
When a current-sense amplifier specifies a room temperature gain error of 1%, for instance, in Texas Instruments’ INA180 datasheet (Fig. 3), it’s actually an indicator of how well-matched the resistors are opposed to the external gain network, where 1% resistors result in ±2% error.

4. The plot compares approximate measurement error over temperature between a current-sense amplifier with 20-ppm/°C drift and a discrete implementation using a gain network with 50-ppm/°C resistors.

The drift is also typically low on the integrated resistors—20 ppm/°C in the case of the INA180, which minimizes the effect of temperature drift on the total error. Figure 4 approximates the impact on error for two different amplifier arrangements over temperature. For this comparison, make the following assumptions:

  • An ideal 200-mΩ shunt with 0% error and no drift.
  • Room-temperature calibration to eliminate the initial offset and gain network errors.
  • Offset drift of 5 µV/°C for both configurations.
  • Configuration No. 1 uses an external gain network of 20 V/V with a 50 ppm/°C gain network.
  • Configuration No. 2 is a current-sense amplifier with matched resistors configured for a gain of 20 V/V and 20 ppm/°C drift.

Summary

Maximizing accuracy in current measurements over temperature is critical in many applications. While room-temperature calibration is relatively straightforward, performing multi-temperature calibration is time-consuming and expensive. Using a current-sense amplifier that integrates a precisely matched, resistive gain network will minimize the temperature-drift effects of the gain error.

Implementing a low-drift amplifier architecture allows you to minimize the offset error over temperature. On that front, Texas Instruments has developed zero-drift current-sense amplifiers, including the INA180 and INA181, that enable high initial room-temperature accuracy while minimizing the effects of temperature.

Related Posts

Market & Supply Chain

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
50
Market & Supply Chain

ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

16.3.2023
100
Automotive

Vishay Releases High Accuracy Automotive Thick Film Chip Resistors

9.3.2023
50

Upcoming Events

Mar 29
15:00 - 16:00 EEST

Supercapacitors vs. Batteries in Engine Starting

Mar 29
17:00 - 18:00 CEST

Practical LLC Transformer Design Methodology

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.