• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Oxides Make Ultra Conductor

3.8.2016

4th PCNS Call for Abstracts Extended !

31.3.2023

KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

31.3.2023

Practical LLC Transformer Design Methodology

31.3.2023

Practical Measurement of Crystal Circuits

31.3.2023

March 2023 ECIA NA Electronic Components Sales Misses Expectations

31.3.2023

Würth Elektronik Presents New Series of DC-Link Film Capacitors

30.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    4th PCNS Call for Abstracts Extended !

    KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    March 2023 ECIA NA Electronic Components Sales Misses Expectations

    Würth Elektronik Presents New Series of DC-Link Film Capacitors

    Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

    Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Designing with High Voltage Resistors: 10 Top Tips for Success

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    4th PCNS Call for Abstracts Extended !

    KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    March 2023 ECIA NA Electronic Components Sales Misses Expectations

    Würth Elektronik Presents New Series of DC-Link Film Capacitors

    Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

    Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Designing with High Voltage Resistors: 10 Top Tips for Success

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Oxides Make Ultra Conductor

3.8.2016
Reading Time: 3 mins read
0 0
0
SHARES
38
VIEWS

source: EE Times article

LAKE WALES, Fla.—Two wrongs still don’t make a right, but two insulators can make an ultra-high electron density conductor at their interface. According to researchers at the University of Utah and the University of Minnesota, the interface hosts an electron gas that outperforms both graphene and gallium nitride in electron density. Applications range from smaller, cooler running, less power hungry transistors, elimination of “wall warts” (those transformers you plug-in to recharge consumer electronics like laptops) to handheld terahertz modulators.

RelatedPosts

4th PCNS Call for Abstracts Extended !

KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

Practical LLC Transformer Design Methodology

Complex oxides often display impressive multi-functionality, encompassing high temperature superconductivity, colossal magnetoresistance, multiferroicity, and strongly-correlated Mott-Hubbard insulator-type behavior. Moreover, interfaces formed from these materials display interface-stabilized ground states, such as two-dimensional electron gases.

Not just any insulators will do. The complex oxides used by University of Utah professor Berardi Sensale-Rodriguez and University of Minnesota professor Bharat Jalan are neodymium titanate (NdTiO) atop strontium titanate (SrTiO) grown on a commercial LaSr substrate (NTO/STO, see figure). Besides this formulation, which other groups are studying as well, are many other complex oxides being studied that exhibit similar “electron gas” phenomena.

“Complex oxides are actually a subject-of-interest for many groups. For instance, there are very well established groups at the University of California Santa Barbara—where my coauthor University of Minnesota professor Bharat Jalan grew the heterostructure for his PhD, at Cornell, and in Japan, to name a few. However, no other team has shown such a large electron density as what is possible in the samples grown by my coauthor. In this regard, there is an earlier paper published by my colleague [Quasi two-dimensional ultra-high carrier density in a complex oxide broken-gap heterojunction] that discusses the origin of this very high charge density,” Sensate-Rodriguez told EE Times.

When Jalan described the high electron density of his material to Sensate-Rodriguez, he immediately proposed using the technique he was using to evaluate graphene samples—terahertz spectroscopy—to determine its precise electron density, and perhaps uncover the mechanism.

“Based on my previous works in graphene I expected to see a larger conductivity than what is extracted from DC measurements because [terahertz spectroscopy] lets one get closer to the intrinsic properties thus the fundamental limits of the materials,” Sensate-Rodriguez told EE Times. “We were surprised with how large the enhancement we saw was. Specially it bench-marked the conductivity of the two-dimensional electron gas (at the oxide interface) at the same levels of what we typically see in graphene and GaN [gallium nitride]. The interesting thing is that both GaN and these complex oxides benefit from large breakdown fields so are suitable for power electronics.”

They also inferred the mechanism which produced the ultra-high electron density as different from gallium nitride.

“The large conductivity in GaN is a product of a large mobility in the materials, whereas that in NTO/STO is a product of the large electron density together with a not so poor mobility,” Sensate-Rodriguez told EE Times.  “These are two fundamentally different approaches that lead to similar results, since the conductivity of a material depends on both the charge density and the mobility of the charges.”

The thing that makes Sensate-Rodriguez and Jalan so optimistic about neodymium titanate atop strontium titanate, is that it is a fresh discovery which has not had be benefit of optimization and yet already preforms as well as gallium nitride or even graphene. Optimization could greatly enhance the new material, perhaps an order of magnitude or more.

“There is still lots of optimization to be done, in particular with respect to the material’s growth. In high quality samples nanoscale and microscale conductivity should approach each other, as what we see in let’s say GaN or graphene,” said Sensate-Rodriguez.

The researchers are also looking beyond the traditional applications of gallium nitride in smaller, less current consuming, cooler running power electronics in electric cars, for instance, and the micro-miniaturization of power supplies (perhaps making them so small that wall-warts can be eliminated by circuitry built into laptops, allowing direct connection to AC). In addition, NTO/STO’s successful modulation in the terahertz regime could also spawn a micro-miniaturization revolution in airport-style scanners, perhaps to handheld size and/or sensitive enough for walk-through versions.

“In terms of applications I see two roads: one in terms of power electronics, and another in terms of terahertz devices, for example, modulators. But the big thing to study now is how to effectively modulate the charge so as to make active devices,” said Sensate-Rodriguez.

Other contributors included University of Utah EE professor Ajay Nahata, graduate students Sara Arezoomandan, Hugo Condori Quispe, Ashish Channa as well as University of Minnesota graduate student Peng Xu. Funding was supplied by the Air Force Young Investigator Research Program at the University of Minnesota, and the National Science Foundation’s Materials Research Science and Engineering Center at the University of Utah.

For all the details read Large nanoscale electronic conductivity in complex oxide heterostructures with ultra high electron density.

Related Posts

Biodegradable polymers in supercapacitors and the recycling process (Source: DICP; Image by WU Lu)
Capacitors

Biodegradable Polymers Are Promising for Supercapacitors

2.3.2023
33
Polysulfates with excellent thermal properties are casted into flexible free-standing films. High-temperature, high-voltage capacitors based on such films show state-of-the-art energy storage properties at 150 degrees Celsius. Such power capacitors are promising for improving the energy efficiency and reliability of integrated power systems in demanding applications such as electrified transportation. (Credit: Yi Liu and He (Henry) Li/Berkeley Lab)
Capacitors

Polysulfate Film Capacitors Pose to Extend Temperature and Energy Density of Film Capacitors

22.2.2023
99
New Technologies

Scientists Report Physical Evidence of Meminductance

2.2.2023
152

Upcoming Events

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

Apr 5
11:00 - 12:00 CEST

Plugging – Filling – Tenting; WE PCB Webinar

Apr 6
April 6 @ 12:00 - April 7 @ 14:00 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Inductors and RF Chokes Basics

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.