• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Panasonic Commercializes Conductive Polymer Hybrid Aluminum Electrolytic Capacitors with the Industry’s Largest Ripple Current

30.11.2020

Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

26.5.2022
Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

26.5.2022

Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

26.5.2022

Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

25.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

    Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

    Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

    Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

    Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

    A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology

    Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

    TDK Introduces Improved Performance PFC Capacitors

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

    Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

    Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

    Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

    Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

    A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology

    Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

    TDK Introduces Improved Performance PFC Capacitors

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Panasonic Commercializes Conductive Polymer Hybrid Aluminum Electrolytic Capacitors with the Industry’s Largest Ripple Current

30.11.2020
Reading Time: 4 mins read
0 0
0
SHARES
141
VIEWS

Panasonic Corporation announced today that its Industrial Solutions Company has commercialized new conductive polymer hybrid aluminum electrolytic capacitors, the large-current ZU series, and large-capacitance ZSU series for use in automotive ECUs (electronic control units) [1].

Mass production will start in December 2020. The new ZU series has achieved ripple current*1 of over 1.4 times as large as the conventional ZS series (ϕ10 x 12.5 mm and ϕ10 x 16.5 mm), supporting increases in circuit load current due to high performance automotive ECUs and contributing to smaller automotive ECUs through a reduction in the number of required capacitors.

RelatedPosts

Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

*1: As conductive polymer hybrid aluminum electrolytic capacitors of the same size as of November 10, 2020 (according to research by Panasonic)

Conductive polymer hybrid aluminum electrolytic capacitors feature low resistance and high reliability with a fusion of conductive polymer and electrolyte and are used in a wide range of applications, from control circuits in automotive engine ECUs, BMSs (battery management systems) [2], to motor drive circuits in 48 V system ISGs (integrated starter generators) [3], electric pumps, radiator fans, and further to ADAS applications (such as cameras, sensors, and control circuits). The progress in electrification and self-driving technology has led to the higher performance of automotive ECUs, which have increased circuit load currents.

The progress has also led to the implementation of redundant design [4] aiming to improve safety and reliability, resulting in use of increased number of automotive ECUs by mounting two sets of circuits in the same ECU, for example. Reducing board size is necessary for smaller mounting space, requiring cutting the number and size of capacitors by increased current and capacitance. To meet these requirements, Panasonic has commercialized the ZU series conductive polymer hybrid aluminum electrolytic capacitors with the industry’s largest ripple current by using high conductivity polymer formation technology and in-capacitor low resistance technology.

ZU series conductive polymer hybrid aluminum electrolytic capacitors features:

  1. The industry’s largest ripple current supports increases in circuit load current and saves board space.The ZU series has achieved ripple current of over 1.4 times as large as the conventional ZS series.
  2. Same capacitance value as conventional hybrid capacitors. The series has achieved large capacitance equivalent to the ZS series.
  3. Support high-temperature environments, guaranteed up to 135ºCThe series offers a guaranteed life of up to 4000 hours at 135ºC in addition to the 4000 hour, 125ºC guarantee for the conventional ZS series products.

Applications

  • Current noise reduction and voltage stabilization in motor drive circuits (DC-link capacitors)
    ・ 48 V system ISGs of mild hybrid cars
    ・ Motor drive applications mounted on xEVs (oil pumps, water pumps, electric power steering, electric compressors, etc.)
  • High output DC/DC power supply (input filter capacitors, output smoothing capacitors)

Product Features

  1. The industry’s largest currents support increases in circuit load current and save board space.The capacitors have achieved the higher conductivity of electrolytes through the use of Panasonic’s unique conductive polymer formation technology, as well as lowering resistances inside the capacitors through the recent technology of low-resistance lead wires. This has achieved ripple current of over 1.4 times as large as the conventional ZS series, enabling a reduction in the number of required capacitors, from the use of several capacitors in parallel, as well as a reduction in the size of capacitors with the same rating, thereby contributing to board area reduction and application downsizing.
  2. Same capacitance value and reliability as conventional conductive polymer hybrid aluminum electrolytic capacitors. The ZU series has achieved large capacitance equivalent to the ZS series of conventional conductive polymer hybrid aluminum electrolytic capacitors by applying the same design of large-capacity and high-reliability.
  3. Support high-temperature environments, guaranteed up to 135ºCBy further improving the heat resistance reliability of materials based on the design that enabled the 125ºC, 4000 hour guarantee for the conventional ZS series products, the ZU series has achieved the 135ºC, 4000 hour guarantee.

Panasonic also commercializes the ZSU series conductive polymer hybrid aluminum electrolytic capacitors with the industry’s largest capacitance*2

By adopting large-capacitance anode and cathode foils, the ZSU series has achieved 1.2 to 1.8 times as large capacitance value as the conventional ZS series products. Mass production will be launched in December 2020.

*2: As conductive polymer hybrid aluminum electrolytic capacitors of the same size as of November 10, 2020 (according to research by Panasonic)

Basic specifications

Term Descriptions

[1] Automotive ECU (Electronic Control Unit)
Unit for electronically controlling systems in a vehicle.
[2] BMS (Battery Management System)
System for controlling the charge/discharge of lithium-ion batteries in xEV.
[3] 48 V system ISG (Integrated Starter Generator)
Generator that also has functions as a starter mounted in mild hybrid vehicles.
[4] Redundant design
Progress in automatic driving requires safety designs. Redundant design enables normal operation to continue, even if one circuit fails, by using another circuit.

Source: Panasonic

Related Posts

Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.
Capacitors

Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

26.5.2022
26
Aerospace & Defence

Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

26.5.2022
14
Aluminium Capacitors

Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

25.5.2022
17

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.