• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Printed electronics components expand their scope

8.3.2019

Designing with High Voltage Resistors: 10 Top Tips for Success

29.3.2023

API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

29.3.2023

KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

28.3.2023

Optimization of 500W LLC Transformer – Case Study

28.3.2023

Flex Suppressor Explained and its Applications

24.3.2023

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Designing with High Voltage Resistors: 10 Top Tips for Success

    API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

    KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

    Optimization of 500W LLC Transformer – Case Study

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Designing with High Voltage Resistors: 10 Top Tips for Success

    API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

    KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

    Optimization of 500W LLC Transformer – Case Study

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Printed electronics components expand their scope

8.3.2019
Reading Time: 3 mins read
0 0
0
SHARES
275
VIEWS

Source: electropages news

by Nnamdi Anyadike

RelatedPosts

Designing with High Voltage Resistors: 10 Top Tips for Success

API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

Whether it is sensors for autonomous driving or light emitting diodes in smart clothing many industry sectors increasingly rely on lightweight and flexible electronics components. On March 19, manufacturers, users and researchers will meet in Munich to discuss innovations and trends in printed electronics at LOPEC, the three day international exhibition for printed electronics.

Wolfgang Mildner, CEO of the consulting and technology company MSW said, “Printed electronics has evolved into a cross-sectional and key technology.” The key focuses of the industry are on human-machine interactions and 3D-structural electronics and innovative materials. IBM’s Watson IoT Center is working on the combination of printed electronics and artificial intelligence to ensure safety in the workplace. And the Spanish textile technology institute AITEX, as well as the Finnish company Polar, is looking into e-textiles and portable electronics.

Printed electronics in medical diagnostics

Printed electronics including sensors that monitor bodily functions and lab-on-a-chip (known as microfluidics) for a quick test at the bedside are also being used in medical diagnostics. And although printed electronics have already established themselves in many areas of medicine and diagnostics, their potential is still far from exhausted. Consulting firm Mordor Intelligence predicts that printed electronics in this market will grow by almost 25 percent by 2023.

Dr. Kerry Adams, Market Segment Manager at DuPont Advanced Materials, UK said, “Thanks to the rapid development of materials and printing techniques, printed electronics is pioneering the decentralisation of diagnostics and care.” The company is one of the leading manufacturers of customised biomedical materials and is making a major contribution to the advance of printed electronics in healthcare.

The US headquartered Nissha Si-Cal Technologies and its subsidiary GSI Technologies now produce printed electrodes for rapid tests on blood sugar, cholesterol and biomarkers of heart attacks. The company is also active in the growing market for microfluidics using blood or urine.

New printing technologies

In February, Optomec a leading global supplier of production grade additive manufacturing systems for 3D printed electronics showcased its new Aerosol Jet systems for 3D production-grade printed electronics in Monterey, California. The technology offers a means of printing conductors and attaching discrete ICs, passives, LEDs and sensors to 3D and flexes substrates.

Meanwhile, researchers at Purdue University have developed a new fabrication method that will allow future electronics components to be printed like newspapers. Current metal fabrication techniques that are used in the manufacture of cell phones, laptops, tablets, and other electronics make the internal metallic circuits by getting a thin rain of liquid metal drops to pass through a stencil mask in the shape of a circuit, similar to spraying graffiti on walls.

But as Ramses Martinez, assistant professor of industrial engineering and biomedical engineering told the American Chemical Society, “This fabrication technique generates metallic circuits with rough surfaces, causing electronics devices to heat up and drain their batteries faster.” The researchers’ new technique allows for better current flow throughout a metallic circuit. “In the future, the roll-to-roll fabrication of devices using our technique could enable the creation of touch screens covered with nanostructures capable of interacting with light and generating 3-D images, as well as the cost-effective fabrication of more sensitive biosensors,” he said.

featured image: Roll-to-roll laser-induced superplasticity, a new fabrication method, prints metals at the nanoscale needed for making electronic devices ultrafast. (Purdue University image/Ramses Martinez)
  

Printed electronics finally comes of age for aerospace

Aerospace is another promising end use sector for printed electronics. Dennis Hahn from Airbus told the Web Site, ‘Inside Composites’, that his company has been interested in printed electronics from as far back as 20 years ago. However, the materials then did not yet meet the extremely high safety requirements of aviation. “But a lot has happened since then” he said.

Together with two Fraunhofer Institutes and the consulting and technology company Altran they have developed demonstrators and are providing proof that printed electronics are ready for applications in aviation. “We are now working on the first near-series prototypes, on a display module for the emergency exit and for the toilets in the cabin. We screen print a silver ink onto a polymer carrier, which we then glue onto a honeycomb structure,” said Hahn.

Outlook

Printed electronics is riding high on the rapid evolution of materials and manufacturing processes. Innovative printing techniques and new materials, including magnetic inks and new semiconductor polymers as well as microfluidically produced nano materials, are all playing an enabling role. And this is likely to provide a significant boost to the market in the coming decade. A recent report from IDTechEx Research expects growth in the total market for printed, flexible and organic electronics to grow from $31.7 Billion in 2018 to $77.3 billion in 2029. Strong growth is expected from the printed and flexible sensors segment that in 2018 was worth $3.6 billion.

Related Posts

Resistors

Designing with High Voltage Resistors: 10 Top Tips for Success

29.3.2023
6
Inductors

API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

29.3.2023
5
Inductors

Optimization of 500W LLC Transformer – Case Study

28.3.2023
8

Upcoming Events

Mar 29
15:00 - 16:00 EEST

Supercapacitors vs. Batteries in Engine Starting

Mar 29
17:00 - 18:00 CEST

Practical LLC Transformer Design Methodology

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.