• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

TDK EPCOS Robust Power AC Filter Film Capacitors Design Explained

8.6.2020

 Exxelia Opens Manufacturing Site in Morocco

27.11.2023

Sumida Extends Ferrite Drum Inductors Offering with Lower DCR and Wider Inductance Range

23.11.2023

How Clock Oscillator Works

23.11.2023

Toroidal Flat Wire PFC Inductors vs. Round Wire PFC Inductors; Würth Elektronik Webinar

23.11.2023

Quasi-Lumped Filters: Combining Filter Technologies to Create Higher-Value Compact Filters

21.11.2023

TDK Unveils EMC Noise Suppression Filters for Audio Lines

21.11.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Market Insights
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

     Exxelia Opens Manufacturing Site in Morocco

    Sumida Extends Ferrite Drum Inductors Offering with Lower DCR and Wider Inductance Range

    How Clock Oscillator Works

    Toroidal Flat Wire PFC Inductors vs. Round Wire PFC Inductors; Würth Elektronik Webinar

    Quasi-Lumped Filters: Combining Filter Technologies to Create Higher-Value Compact Filters

    TDK Unveils EMC Noise Suppression Filters for Audio Lines

    November 23 – Interconnect, Passives & Electromechanical Components Market Insights

    Understanding The Power of Magnetic Fusion

    Murata Releases World’s First High Energy Density 1uF 100V MLCC in a 1608 Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Addressing EMC Issues; Texas Instruments and Würth Elektronik Webinar

    DC-Link Film Capacitors for DC-Charger Applications; WE Webinar

    Transformer Design for EMC; WE Webinar

    Filter Calculation and Selection with REDEXPERT EMI Filter Designer; WE Webinar

    Experimental Demonstration of Inductor Back Electromotive Force EMF

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Market Insights
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

     Exxelia Opens Manufacturing Site in Morocco

    Sumida Extends Ferrite Drum Inductors Offering with Lower DCR and Wider Inductance Range

    How Clock Oscillator Works

    Toroidal Flat Wire PFC Inductors vs. Round Wire PFC Inductors; Würth Elektronik Webinar

    Quasi-Lumped Filters: Combining Filter Technologies to Create Higher-Value Compact Filters

    TDK Unveils EMC Noise Suppression Filters for Audio Lines

    November 23 – Interconnect, Passives & Electromechanical Components Market Insights

    Understanding The Power of Magnetic Fusion

    Murata Releases World’s First High Energy Density 1uF 100V MLCC in a 1608 Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Addressing EMC Issues; Texas Instruments and Würth Elektronik Webinar

    DC-Link Film Capacitors for DC-Charger Applications; WE Webinar

    Transformer Design for EMC; WE Webinar

    Filter Calculation and Selection with REDEXPERT EMI Filter Designer; WE Webinar

    Experimental Demonstration of Inductor Back Electromotive Force EMF

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK EPCOS Robust Power AC Filter Film Capacitors Design Explained

8.6.2020
Reading Time: 6 mins read
A A

In the input/output circuits of power electronics, filtering is required to achieve the necessary power quality and EMC performance. With this in mind, TDK has developed new series of EPCOS AC filter capacitors, which excel thanks to their high degree of reliability and long service life.

AC filter capacitors are supplied with very high power ratings. According to the IEC-61071 standard for capacitors in power electronics, a safety device is mandatory for power capacitors, which activates the capacitors in the event of a fault. Previously, internal connection wires of the winding tended to be used as the safety device, which featured a defined notch, also known as the breakaway quick-closing device. In the event of a short circuit or extreme overload of the capacitor, the pressure inside of capacitor increases, the groove expands, and the connection wire tears at the notched point. Figure 1 illustrates the principle.

RelatedPosts

 Exxelia Opens Manufacturing Site in Morocco

Sumida Extends Ferrite Drum Inductors Offering with Lower DCR and Wider Inductance Range

How Clock Oscillator Works

The connection wire is soldered to the screw terminal connection. This is however associated with several disadvantages, as the soldering process can result in discoloration of connections (oxidation) and peeling of paint. Furthermore, in adverse conditions, liquid resin which leaks out of the capacitor can damage other electronic components. This design has also the disadvantage that it is sensitive to vibrations. In the event of a more severe mechanical impact, the phase connection wire can be disconnected (figure 1) damaging the capacitor completely. That happens mainly in applications such as in machines with strong vibrations, such as compressors and wind generators or during transport, whereby the respective phase is interrupted stopping the flow of electrical current leaving capacitor out of operation.

[---Image_alt---] Figure1_en
Figure 1: In the event of an overload the groove expands and the notched point of the connection wire tears
[---Image_alt---] Figure2_en
Figure 2: Thanks to the safety device design, the soldering process of connection wires is now a thing of the past. Furthermore, this results in improved reliability.

Increased safety thanks to solderless connection

TDK has now developed a new, more reliable safety device, which is to be used by AC filter capacitors of the new EPCOS MKD-AC series B3237* (upgrade of old series EPCOS MKP-AC B3236*). Solid screw connections are used here, through which the soldered connection wire is no longer routed. During normal operation, the screw connections press on their bottom side on the copper strips, which contact the capacitor windings. If the capacitor is now damaged, the cover is lifted with the screw connections (homogenous horizontal force) and the contact to the copper strips is interrupted, which ultimately activates the safety device of the capacitor. In addition to preceding soldering techniques with all its disadvantages, this design results in considerably increased mechanical robustness against vibration. Figure 2 illustrates the principle.

Increased service life thanks to enhanced thermal design

Another critical point is the service life of capacitors with the standard safety device design. The lifetime estimations show the standard expected lifetime of 100,000 hours  at +85 °C hotspot  based on endurance test results performed according to IEC61071 standard. The service life of the metalized film essentially depends on the rated voltage and hotspot temperature (Ths) during operation, as it is shown in figure 3. 

[---Image_alt---] Figure3_en
Figure 3: Expected lifetime in hours at different hotspot temperatures (Ths) and voltages VRMS

In the conventional design, the connection wire is in the center of the capacitor winding. In the old MKP-AC design during operation, a current flows through the copper connection cable with a specific effective value, which increases the temperature of the wire. Consequently, the temperature of the winding increases in the old design, whereby the temperature difference between the middle and outside could go up to 15 to 20° Celsius degrees. This consequently lead to a decrease in service life.

TDK Electronics has therefore significantly improved the design of its Filter capacitor upgrading the old series MKP-AC B3236 to the new series MKD-AC B3237*. Instead of round wires, flat copper cables with a lower resistance are used, which reduces heat generation. Furthermore, these flat cables are fitted outside the winding and therefore offer good thermal coupling to the aluminum can of the capacitor, which results in better heat dissipation. As such, the newly designed capacitors have a service life of at least 100,000 hours during operation with rated voltage at maximum hotspot temperature. Figure 5 illustrates the design principle.

[---Image_alt---] Figure4_en
Figure 4: AC filtering power capacitor with notch-wire safety device
[---Image_alt---] Figure5_en
Figure 5: By using copper strips with low resistance, which have good thermal coupling to the capacitor can, heat dissipation is improved which increases the service life of the capacitor.

Space-saving due to 3-phase design

Powerful converters for drives or photovoltaic and wind energy power plants are built in a 3-phase design in today’s industry. Many manufacturers of power electronics continue to use three single capacitors for input/output filtering.. 3-phase filter capacitors do however offer a number of advantages:  

  • Less space required
  • Reduced volume
  • Lower weight
  • Fewer components
  • Reduced risk of failure
  • Less manpower

One specific example is: One 3-phase EPCOS MKD-AC capacitor B32377A3107J030 can replace three units of single phase capacitors (B32373A3107J030) for a three-phase electrical load and in doing so, achieves the same electric strength and capacitance needed. 

For this particular case, the solution with 1 piece of a 3-phase capacitor has a 22% percent less volume (without considering space between the capacitors) and a 50% percent less weight in comparison to the 3 pieces needed of 1-phase capacitor solution. Furthermore, the 3-phase solution is up to 40% percent cheaper, based on the acquisition costs of the capacitors alone. Also, fewer cable connections are required (3 phase cables for 3-phase capacitor instead of 6 phase cables for 3 pieces of 1-phase capacitor), less workforce (capacitor mounting), and the risk of failure is lower. 

[---Image_alt---] Figure6_en
Figure 6: The 3-phase solution provides considerable advantages in terms of space requirements, weight and reliability when compared to using three individual 1-phase capacitor solution.

The benefits of one 3-phase filter capacitor compared to three units of single-phase capacitor solution at a glance:

Parameter1 Ph3 Ph
Capacitance [µF]100100
Voltage [Veff]330330
Current [Ieff]3633
Weight [kg]0,71,4
Radius [mm]7575
Height [mm]117275
Total solution3 x 1Ph1 x 3 Ph
Number of phase cables [-]63
Total weight [kg]2.11.4
Total volume [cm³]62034860
Total capacitance [µF]3×1003×100

Authors: Nicolás Faúndes and Dennis Huang, both TDK Electronics

Source: TDK EPCOS

Related Posts

Market & Supply Chain

 Exxelia Opens Manufacturing Site in Morocco

27.11.2023
10
Inductors

Sumida Extends Ferrite Drum Inductors Offering with Lower DCR and Wider Inductance Range

23.11.2023
26
Inductors

Toroidal Flat Wire PFC Inductors vs. Round Wire PFC Inductors; Würth Elektronik Webinar

23.11.2023
51

Upcoming Events

Nov 28
November 28 @ 12:00 - November 29 @ 14:00 EST

Microelectronic Packaging Failure Modes and Analysis

Nov 28
16:00 - 17:00 CET

Definition of component heating of power inductors in switching regulators using IEC 62024

Dec 4
20:00 - 21:00 CET

Film Capacitors: The Versatility and Stability

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Capacitor Symbols

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2023
2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.