• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Ultracapacitors in electrification: Driving change with complementary technologies

13.4.2018

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023

Flying Capacitors Explained

17.3.2023

TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

16.3.2023

ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

16.3.2023

Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

15.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    TAIYO YUDEN Releases 150C Automotive Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    TAIYO YUDEN Releases 150C Automotive Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Ultracapacitors in electrification: Driving change with complementary technologies

13.4.2018
Reading Time: 3 mins read
0 0
0
SHARES
19
VIEWS

source: Energy-Storage news

In much the same way that the industrial revolution changed society all those years ago, electrification is now the driving force behind the industrialisation of multiple sectors. From manufacturing to automotive, mobility to the introduction of technologies such as the Internet of Things, electrification is seen by many as the nucleus around which society is developing.

RelatedPosts

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

Flying Capacitors Explained

Similarly, an industry which has arguably seen the greatest change in recent years, is renewable energy. This is as a result of multiple factors; rising concerns surrounding global warming; new laws and regulations surrounding pollution and innovative technology which enhance the capabilities of clean energy. As we shift from fossil fuels to renewables, more and more of our everyday utilities are powered by electricity. Yet, the infrastructure and technology used to accommodate this demand is rarely discussed.

Even if renewable energy could provide a constant, stable source of energy, there’s still the question of how to ensure grid infrastructure is robust enough to deal with demand. There are a couple of routes which can be taken to combat these issues. We can generate more electricity and overfeed the grid so it is always capable of handling any spikes in consumption or we can incorporate energy storage systems within the grid to reserve energy during quiet periods to accommodate spikes in demand.

The (possible) solutions

Battery technology is becoming increasingly influential in catering for the demands of the national grid, with both flywheels and banks of batteries commonly deployed across the energy sector.

Touching upon flywheels first, these high inertia wheels generate power through utilising rotation at high revs (8000 Revs per minute, or more) and are kept in motion through the input of currents to ensure the select infrastructure is prepared for any surprise power surges. Although a downside to this method is the time required to not only implement such technology, but maintain it as regular maintenance is required every five years.

Banks of batteries, on the other hand, are commonly used to prevent blackouts, but due to their low power density they cannot deliver the necessary high powers jolts without sustaining damage. This means that a high volume of batteries are required to ensure the process is reliable, and on top of this, they also require regular maintenance throughout their lifecycle.

High inertia flywheels could also have a role to play. Image: Temporal Power.

Why ultracapacitors can solve the problem

An alternative solution which is rapidly gaining momentum is ultracapacitor banks. With their ability to charge and discharge extremely quickly, ultracapacitors can supply almost all their power instantaneously, proving they are capable of coping with load peaks triggered by activity commonly associated with grid activity.

Known for their fast energy storage, this technology has increased power density, meaning it can provide high currents, allowing almost instant charge and discharge. This enables the technology to provide significant levels of reliability to support large-scale infrastructure, such as national grids, ensuring a seamless operation process. The difference between an ultracapacitor and an ordinary battery lies in how the energy is stored, with ultracapacitor storing energy in an electric field, rather than a chemical reaction. However, this does not mean they cannot be used in tandem with batteries, and actually have the capacity to expand the life-cycle of lithium-ion batteries and in doing so, improve safety measures.

When applying this technology to the grid, its main advantage is that it is a “fit and forget” solution. Providing they are stored in an environment with a temperature between -20.c and +65.c, the lifetime of an ultracapacitor is capable of surpassing ten years, with no heavy maintenance required during this period. Ultracapacitor can also entertain above a million cycles and, due to their low internal resistance, they won’t overheat easily. In addition to all this, given their superior power density, the number of ultracapacitors required to prevent blackouts is significantly lower compared to a standard batteries, so it is also a cost effective solution.

Striving for sustainability

Adding ultracapacitor’s to grid infrastructure can bring safety and peace of mind to those who regulate it. Reductions in blackouts, power cuts and other grid related inconveniences will relieve electrical power suppliers and consumers from operational unpredictability, both in the short and long-term, as electrification becomes ever more prominent.

In order to support this shift and the huge demand on power resources, it is crucial that we have the infrastructure and technology in place that can support peak power needs and prevent costly outages.

Skeleton Tech ultracapacitors. Image: Skeleton Technologies.

Related Posts

Capacitors

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023
3
Market & Supply Chain

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
1
Capacitors

Flying Capacitors Explained

17.3.2023
24

Upcoming Events

Mar 20
March 19 - March 23

APEC 2023

Mar 22
14:00 - 15:00 CET

Parasitic Components in Power Converters – Fundamentals and Measurements Rohde & Schwarz Webinar

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.