• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Using high capacity MLCCs to provide DC power smoothing

10.8.2016

KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

28.3.2023

Optimization of 500W LLC Transformer – Case Study

28.3.2023

Flex Suppressor Explained and its Applications

24.3.2023

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

23.3.2023

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

    Optimization of 500W LLC Transformer – Case Study

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

    Optimization of 500W LLC Transformer – Case Study

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Using high capacity MLCCs to provide DC power smoothing

10.8.2016
Reading Time: 4 mins read
0 0
0
SHARES
863
VIEWS

source: Electropages article

Yoshimasa Goto, Product Engineer at Murata, explains how technical innovation has produced high-capacitance MLCCs, suitable for smoothing applications.

RelatedPosts

KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

Optimization of 500W LLC Transformer – Case Study

Flex Suppressor Explained and its Applications

The vast majority of applications today, use an AC power adapter or AC/DC power supply to provide a DC voltage to power all aspects of the design. For some designs, a single DC supply rail is used to create additional voltage rails as required using specific power ICs. Capacitors, typically having a high value above 100 µF and termed smoothing capacitors, are used to even out fluctuations in the DC voltage, hence ‘smooth’ that result from changing load conditions, load regulation transients and rectifier dips. Another aspect of modern day designs, using leading-edge semiconductors is that these devices are using lower voltage supplies, down to 0.6 VDC in some cases. As a consequence lower impedance smoothing capacitors are needed to ensure the stability of the circuitry.

MURA117-Figure1

Figure 1. Classification of capacitors according to structure and composition
Figure 1 illustrates a table of different capacitor types available, classified according to their basic structure and the materials used in the composition. The different advantages and disadvantages of each one is highlighted. There can be seen to be a number of advantages to using a multilayer ceramic capacitor, MLCC. These include their compact and small dimensions, their high reliability compared to other types of capacitors, and their low impedance or equivalent series resistance (ESR). In addition, they are very price competitive. However, some of the downsides to the MLCC is that they have a thermal dependence of capacitance and an effective capacitance value that decreases with voltage application. This last affect is more commonly termed its DC bias characteristic. As a consequence most small, high-capacitance capacitors are multilayer ceramic capacitors, while most of the smoothing capacitors in use today, which require over a 100µF capacitance value and low impedance characteristics, are conductive-polymer electrolytic capacitors.

However, the disadvantages of the MLCC for use as a smoothing capacitor are being reduced thanks due to ongoing technical innovation aimed at increasing the capacitance values even higher. For example, Murata Manufacturing has already established technologies that allow stable, mass production of 1,000 or more, 1μm or less high-accuracy dielectric layers and reduction of their overall thickness. The result is the ability to reliably mass-produce MLCCs with capacitance values of 100 µF. An example of a 330 µF measuring just 3.2 x 2.5 mm is illustrated in Figure 2.

MURA117-Figure2

Figure 2. A cross sectional diagram of a 3.2 × 2.5 mm, 330μF MLCC

With the industry trend towards using lower voltage microcontroller and digital logic devices, the impact that the DC bias characteristic of an MLCC has on the reduction of the effective capacitance is diminished. As a result, higher value MLCCs are now increasingly being considered as a viable capacitor technology to use for smoothing DC supply voltages. An interesting perspective towards using MLCCs to replace the conductive-polymer electrolytic capacitors that have been traditionally used in smoothing applications is that the MLCC replacements can have a lower capacitance value. The reason for this is that multi layer ceramic capacitors have lower impedance and equivalent series resistance characteristics compared to the conductive-polymer devices. This is highlighted in Figure 3.

MURA117-Figure3

Figure 3. Impedance and ESR-frequency characteristics of conductive-polymer tantalum electrolytic capacitors and multilayer ceramic capacitors.

The figure indicates that in the frequency range above 100 kHz, which is a switching frequency for power ICs used in digital devices, multilayer ceramic capacitors have a lower impedance and ESR values than conductive-polymer tantalum electrolytic capacitors, even if the former have a lower capacitance than the latter. Also, multilayer ceramic capacitors are more effective in suppressing high-frequency noise because at frequencies higher than the resonance frequency, they have much lower impedance than conductive-polymer tantalum electrolytic capacitors.

MURA117-Figure4

Figure 4. Test results and diagram of the evaluation circuit

 

In order to validate the capacitor differences an investigation was carried out on capacitor replacement using an evaluation board for double data rate (DDR) power ICs for PCs. Figure 4 shows the evaluation circuit and the examination results. In this evaluation board, DC 1.4 V voltage was used, and two conductive-polymer tantalum electrolytic capacitors (7.3 × 4.3 mm, 2.0V, 330 µF, M tolerance) were initially used as smoothing capacitors. Then, these capacitors were replaced with 150 µF and 220 µF multi-layer ceramic capacitors (3.2 × 1.6 mm, 6.3 V, M tolerance) to examine voltage fluctuation associated with changes in ripple voltage, spike volt-age, and load. Before this examination, phase adjustments were made to ensure the stability of the evaluation board.

The results showed that multi-layer ceramic capacitors tend to have a lower ripple voltage even though they have a lower nominal capacitance than conductive-polymer tantalum electrolytic capacitors. This is probably because at the switching frequency, multi-layer ceramic capacitors have low impedance and ESR, and so cause the voltage fluctuation to decrease. The results also showed that multi-layer ceramic capacitors tend to have a lower spike voltage in a similar manner. This is probably because they have low ESL, and as a result, suppress high-frequency noise.

However, in a load change test where current was changed significantly, there was a large voltage fluctuation when 150 µF multi-layer ceramic capacitors were used. This is probably because the load change test has a correlation with the effective capacitance of capacitors obtained when voltage is applied. The multi-layer ceramic capacitors used in this test have a lower nominal capacitance than the conductive-polymer tantalum electrolytic capacitors, and their effective capacitance is decreased by DC bias characteristics; this is the reason for the large voltage fluctuation in this test. However, the voltage fluctuation was reduced by using 220 µF high-capacitance capacitors.

As the use of low-voltage semiconductor devices has been rapidly increasing, conductive-polymer electrolytic capacitors featuring high capacitance and low ESR have been widely used as smoothing capacitors for power ICs that supply DC power to the semiconductor devices. Size reduction and long-term reliability, however, are considered more important for other devices that use these semiconductor devices, such as server computers, and they are also important for smoothing capacitors. There is, therefore, a demand for expansion of > 100 µF multi-layer ceramic capacitors that can be more easily miniaturized, are more reliable, and feature low impedance, ESR, and ESL.

 

Related Posts

Aerospace & Defence

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023
55
Market & Supply Chain

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

23.3.2023
88
Capacitors

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023
174

Upcoming Events

Mar 29
15:00 - 16:00 EEST

Supercapacitors vs. Batteries in Engine Starting

Mar 29
17:00 - 18:00 CEST

Practical LLC Transformer Design Methodology

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.