Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Releases Components Library v25.0 for Keysight 

    How to design a 60W Flyback Transformer

    Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

    Murata Releases 008004 High-Frequency SMD Chip Inductor

    Wk 19 Electronics Supply Chain Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Releases Components Library v25.0 for Keysight 

    How to design a 60W Flyback Transformer

    Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

    Murata Releases 008004 High-Frequency SMD Chip Inductor

    Wk 19 Electronics Supply Chain Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Combination of Supercapacitor with Fuel Cell Moves Hydrogen Cars and Energy Storage For The Masses One Step Closer To Reality

21.11.2017
Reading Time: 3 mins read
A A

source: UCLA news

UCLA researchers have designed a device that can use solar energy to inexpensively and efficiently create and store energy, which could be used to power electronic devices, and to create hydrogen fuel for eco-friendly cars.

RelatedPosts

Modelithics Releases Components Library v25.0 for Keysight 

How to design a 60W Flyback Transformer

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

The device could make hydrogen cars affordable for many more consumers because it produces hydrogen using nickel, iron and cobalt — elements that are much more abundant and less expensive than the platinum and other precious metals that are currently used to produce hydrogen fuel.

“Hydrogen is a great fuel for vehicles: It is the cleanest fuel known, it’s cheap and it puts no pollutants into the air — just water,” said Richard Kaner, the study’s senior author and a UCLA distinguished professor of chemistry and biochemistry, and of materials science and engineering. “And this could dramatically lower the cost of hydrogen cars.”

The technology, described in a paper in the journal Energy Storage Materials, could be especially useful in rural areas, or to military units serving in remote locations.

“People need fuel to run their vehicles and electricity to run their devices,” Kaner said. “Now you can make both electricity and fuel with a single device.”

It could also be part of a solution for large cities that need ways to store surplus electricity from their electrical grids.

“If you could convert electricity to hydrogen, you could store it indefinitely,” said Kaner, who also is a member of UCLA’s California NanoSystems Institute.

Traditional hydrogen fuel cells and supercapacitors have two electrodes: one positive and one negative. The device developed at UCLA has a third electrode that acts as both a supercapacitor, which stores energy, and as a device for splitting water into hydrogen and oxygen, a process called water electrolysis. All three electrodes connect to a single solar cell that serves as the device’s power source, and the electrical energy harvested by the solar cell can be stored in one of two ways: electrochemically in the supercapacitor or chemically as hydrogen.

The device also is a step forward because it produces hydrogen fuel in an environmentally friendly way. Currently, about 95 percent of hydrogen production worldwide comes from converting fossil fuels such as natural gas into hydrogen — a process that releases large quantities of carbon dioxide into the air, said Maher El-Kady, a UCLA postdoctoral researcher and a co-author of the research.

“Hydrogen energy is not ‘green’ unless it is produced from renewable sources,” El-Kady said. He added that using solar cells and abundantly available elements to split water into hydrogen and oxygen has enormous potential for reducing the cost of hydrogen production and that the approach could eventually replace the current method, which relies on fossil fuels.

Combining a supercapacitor and the water-splitting technology into a single unit, Kaner said, is an advance similar to the first time a phone, web browser and camera were combined on a smartphone. The new technology may eventually lead to new applications that even the researchers haven’t considered yet, Kaner said.

The researchers designed the electrodes at the nanoscale — thousands of times thinner than the thickness of a human hair — to ensure the greatest surface area would be exposed to water, which increases the amount of hydrogen the device can produce and also stores more charge in the supercapacitor. Although the device the researchers made would fit in the palm of your hand, Kaner said it would be possible to make larger versions because the components are inexpensive.

“For hydrogen cars to be widely used, there remains a need for a technology that safely stores large quantities of hydrogen at normal pressure and temperature, instead of the pressurized cylinders that are currently in use,” said Mir Mousavi, a co-author of the paper and a professor of chemistry at Iran’s Tarbiat Modares University.

The paper’s other co-authors are graduate student Yasin Shabangoli and postdoctoral scholars Abolhassan Noori and Mohammad Rahmanifar, all of Tarbiat Modares.

featured photo: A replica of the device by Reed Hutchinson/UCLA

Related

Recent Posts

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

12.5.2025
8

Power Inductor Considerations for AI High Power Computing – Vishay Video

9.5.2025
17

TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

9.5.2025
12

Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

9.5.2025
3

Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

9.5.2025
4

KYOCERA AVX Releases Compact High-Directivity Couplers

7.5.2025
21

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
68

YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

5.5.2025
24

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
54

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
70

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 14
17:00 - 17:30 CEST

Calculating Foil Winding Losses with AI

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version