Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Releases Components Library v25.0 for Keysight 

    How to design a 60W Flyback Transformer

    Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

    Murata Releases 008004 High-Frequency SMD Chip Inductor

    Wk 19 Electronics Supply Chain Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Releases Components Library v25.0 for Keysight 

    How to design a 60W Flyback Transformer

    Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

    Murata Releases 008004 High-Frequency SMD Chip Inductor

    Wk 19 Electronics Supply Chain Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TI Buck Regulators with Integrated Capacitors Suppress EMI and Save Board Space

24.8.2022
Reading Time: 4 mins read
A A

Texas Instruments (TI) releases buck regulators with integrated capacitors to suppress EMI and save board space.

TI rolled out a new pair of synchronous step-down dc-dc converters—the industrial-grade LMQ66430 and automotive-grade LMQ66430-Q1—designed to reduce EMI on factory floors and in medical devices, autos, aerospace, and defense. The 36-V, 3-A buck converters combine two input bypass capacitors with a single boot capacitor in a compact 2.6- × 2.6-mm QFN package with wettable flanks, helping boost power density.

RelatedPosts

Modelithics Releases Components Library v25.0 for Keysight 

How to design a 60W Flyback Transformer

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

“We’re combining IP and in-package innovations. In today’s electric vehicles, you have so many more systems, and these systems are all very sensitive,” he said, including the high-voltage electronics and various power converters, all placed close together in the vehicle. There are also thousands of feet of cabling in electric vehicles, which can lead to large amounts of EMI. “We have to protect these systems from interfering with each other and it’s really complex,” said Carsten Oppitz, VP and GM of buck switching regulators at TI

The Buck Converter Design Challenge

It’s a challenge to create highly efficient and compact designs while also adhering to strict electromagnetic interference (EMI) requirements imposed by groups such as Comité International Spécial des Perturbations Radioélectriques (CISPR). Therefore, component selection becomes a critical part of the design process.

As with most design decisions, choosing between different components almost always comes down to an assessment of tradeoffs based on your most critical design goals. Known for high efficiency and good thermal performance, buck regulators are not typically considered low-EMI options. Fortunately, you have several options for reducing the EMI generated by such regulators. To aid further discussion, Figure 1 shows a simplified buck regulator schematic.

Figure 1: Simplified buck regulator schematic

Board layout considerations

Beyond selecting proper passive component values to ensure a functional design, board layout should be your first consideration when your design must fall under EMI limits. There are two general rules that can help minimize generated EMI with all buck regulator board layouts:

  • Minimize high transient current (di/dt) loop areas by bringing the input capacitor and boot capacitor as close to the VIN and GND pins of the integrated circuit as possible.
  • Minimize the surface area of high transient voltage (dv/dt) nodes by minimizing the area of the switch node.

Integrated input capacitors

As I mentioned, reducing the area of high di/dt current loops is very important when designing switching regulators to remain under EMI limits. In a buck regulator, it’s important to consider the input-voltage-to-ground loop from an EMI perspective. A buck regulator steps down a higher DC voltage to a lower one by switching the connection to the supply on and off, resulting in high-side metal-oxide semiconductor field-effect transistor (MOSFET) (Q1) current, shown in Figure 2.

Figure 2: Input current waveform to a buck regulator

The MOSFET switches on and off rapidly, creating very sharp, almost discontinuous currents supplied by the input capacitor. Some devices, such as TI’s 3-A LMQ66430-Q1 and 6-A LMQ61460-Q1 36-V buck regulators, integrate high-frequency input capacitors inside the package, resulting in the smallest possible input current-loop area. Reducing the area of this input current loop results in smaller parasitic inductance at the input, which reduces the amount of electromagnetic energy emitted.

Integrated boot capacitor

Another high di/dt current loop that you should consider is the boot capacitor loop. The boot capacitor is responsible for supplying charge to the high-side MOSFET gate driver during the on-time. Internal circuitry refreshes this capacitor during the off-time. The source terminal of the high-side MOSFET connects to the switch node rather than GND. Referencing the boot capacitor to the source pin of the MOSFET ensures that the gate-to-source voltage (VGS) is high enough to turn on the MOSFET. With most buck regulators, you will have to leave some switch node area available on the board to connect the bootstrap capacitor, although this can be counterproductive when trying to minimize the area of the switch node for EMI. By integrating the boot capacitor inside the package, the LMQ66430-Q1 follows the two rules that I mentioned earlier, while also reducing the need for an external component.

Conclusion

It can be difficult to design compact power-supply designs capable of remaining under strict EMI limits. Buck regulators with integrated capacitors can make the process of EMI-compliant designs easier, while also helping reduce the overall external component count.

Related

Source: Texas Instruments

Recent Posts

How to design a 60W Flyback Transformer

12.5.2025
5

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

12.5.2025
4

Modeling and Simulation of Leakage Inductance

9.5.2025
9

TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

9.5.2025
10

Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

9.5.2025
3

Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

9.5.2025
4

KYOCERA AVX Releases Compact High-Directivity Couplers

7.5.2025
21

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
68

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
53

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
70

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 14
17:00 - 17:30 CEST

Calculating Foil Winding Losses with AI

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version