• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Chu’s Limit for Antenna bandwidth — a limit no more due to capacitors and inductors

27.2.2017

4th PCNS Call for Abstracts Extended !

31.3.2023

KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

31.3.2023

Practical LLC Transformer Design Methodology

31.3.2023

Practical Measurement of Crystal Circuits

31.3.2023

March 2023 ECIA NA Electronic Components Sales Misses Expectations

31.3.2023

Würth Elektronik Presents New Series of DC-Link Film Capacitors

30.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    4th PCNS Call for Abstracts Extended !

    KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    March 2023 ECIA NA Electronic Components Sales Misses Expectations

    Würth Elektronik Presents New Series of DC-Link Film Capacitors

    Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

    Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Designing with High Voltage Resistors: 10 Top Tips for Success

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    4th PCNS Call for Abstracts Extended !

    KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    March 2023 ECIA NA Electronic Components Sales Misses Expectations

    Würth Elektronik Presents New Series of DC-Link Film Capacitors

    Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

    Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Designing with High Voltage Resistors: 10 Top Tips for Success

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Chu’s Limit for Antenna bandwidth — a limit no more due to capacitors and inductors

27.2.2017
Reading Time: 2 mins read
0 0
0
SHARES
416
VIEWS

source: Phys Org news

Chu’s Limit, a fundamental principle of electromagnetics, dictates that the bandwidth an antenna can function in has a maximum level proportional to the physical size of the antenna—the smaller the antenna, the smaller the bandwidth, the slower and less capable the communications link. Justin Church, used non-Foster circuits embedded in an electrically small antenna to produce the first experimentally measured instance of exceeding the Limit by negatively charged capacitors and inductors.

RelatedPosts

4th PCNS Call for Abstracts Extended !

KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

Practical LLC Transformer Design Methodology

Chu’s Limit has been a foundational law of antenna and telecommunications research since its introduction in the late 1940s, but a scientist at the Space and Naval Warfare Systems Center Pacific (SSC Pacific) has recently, for the first time, exceeded Chu’s Limit in a measured experiment.

Justin Church, an engineer in the Center’s applied electromagnetics group, used non-Foster circuits embedded in an electrically small antenna to produce the first experimentally measured instance of exceeding the Limit. Several papers have theorized or simulated such a possibility, but Church is the first to demonstrate an antenna capable of using bandwidths that exceed this fundamental limit.

He was able to achieve this thanks to two novel advances: non-Foster circuits and internal matching. Non-Foster circuits are active, transistorized circuits that effectively create capacitors and inductors that are negatively charged, meaning the reactance is inverted to that of conventional capacitors and inductors. Coupling this technique with internal matching—embedding the antenna and circuit into one structure—allowed the electrically small antenna to achieve a broader bandwidth, while not sacrificing efficiency. An electrically small antenna is one in which the largest dimension of the structure is less than one-tenth of a wavelength. Most electrically small antennas have less than 1 percent efficiency, but Church was able to achieve an efficiency of 85 percent.

Church experimentally verified an instantaneous bandwidth of 18 Megahertz from an internally matched, non-Foster integrated antenna that had a physical volume less than one-tenth the operational wavelength. This measured bandwidth exceeds the Chu limit by 2.5 times.

Aside from the scientific importance of achieving this previous impossibility, this is an important area of research for the Navy, and will have far reaching impacts on the warfighter.

“A lot of the communication bands the military is interested in using are often at low frequencies—very high frequency (VHF) and ultra-high frequency (UHF). Here, the wavelengths are quite long—over a meter or more—and at these frequencies the wave travels a long distance,” Church explained. “The challenge is, in order for an antenna to operate efficiently at those frequencies, it has to be physically large, often on a scale of several meters.”

This is a challenge for those tasked with executing Navy missions, where smaller, portable antennas are much more effective and covert.

“There’s a big push, and always a need for the military to research how small you can make antennas and have them operate as efficiently as large ones,” Church said. “Antennas that are compact allow for greater operational capabilities.”

SSC Pacific is the naval research and development lab tasked with ensuring Information Warfare superiority.

featured image: Measured bandwidth performance comparison of non-Foster integrated antenna vs. passive (conventional) antenna of the same physical size. Credit: Space and Naval Warfare Systems Center

Related Posts

PCNS

4th PCNS Call for Abstracts Extended !

31.3.2023
115
Capacitors

KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

31.3.2023
7
Inductors

Practical LLC Transformer Design Methodology

31.3.2023
24

Upcoming Events

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

Apr 5
11:00 - 12:00 CEST

Plugging – Filling – Tenting; WE PCB Webinar

Apr 6
April 6 @ 12:00 - April 7 @ 14:00 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Inductors and RF Chokes Basics

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.