• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Designing Flexible Supercapacitor Modules with the Cable Based Capacitors

16.2.2022

Cornell Dubilier Unveils Y2 Class Interference Suppression Capacitors

4.10.2023

Bourns Unveils ChipGuard® ESD Suppressors

4.10.2023

September 23 – Interconnect, Passives & Electromechanical Components Market Insights

3.10.2023

Choosing the Right Noise Filters for Automotive Networks

3.10.2023

Ceramic Capacitors Supporting DC Link Filters

3.10.2023

KYOCERA AVX is Acquiring Bliley Technologies, A Global Leader in Low-Noise Frequency Control Products

3.10.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Market Insights
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Cornell Dubilier Unveils Y2 Class Interference Suppression Capacitors

    Bourns Unveils ChipGuard® ESD Suppressors

    September 23 – Interconnect, Passives & Electromechanical Components Market Insights

    Choosing the Right Noise Filters for Automotive Networks

    Ceramic Capacitors Supporting DC Link Filters

    KYOCERA AVX is Acquiring Bliley Technologies, A Global Leader in Low-Noise Frequency Control Products

    Resonant MLCC OBC Application Guide

    Bourns Releases New Compact Size High Current Ferrite Beads

    Skeleton Demonstrated Supercapacitor Based Shuttle Charging in Seconds

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Market Insights
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Cornell Dubilier Unveils Y2 Class Interference Suppression Capacitors

    Bourns Unveils ChipGuard® ESD Suppressors

    September 23 – Interconnect, Passives & Electromechanical Components Market Insights

    Choosing the Right Noise Filters for Automotive Networks

    Ceramic Capacitors Supporting DC Link Filters

    KYOCERA AVX is Acquiring Bliley Technologies, A Global Leader in Low-Noise Frequency Control Products

    Resonant MLCC OBC Application Guide

    Bourns Releases New Compact Size High Current Ferrite Beads

    Skeleton Demonstrated Supercapacitor Based Shuttle Charging in Seconds

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Designing Flexible Supercapacitor Modules with the Cable Based Capacitors

16.2.2022
Reading Time: 9 mins read
A A
17
VIEWS

Capacitech Energy, Inc. is reimagining the energy storage industry by innovating the form factor that energy storage products come in. Initially focused on supercapacitors, the Cable-based Capacitor (CBC) product line, features a wire-like shape and is physically flexible, unlike traditional supercapacitors. Flexible supercapacitors can be used in applications in which they were never imagined, helping our customers achieve their design and performance goals.

Supercapacitors are energy storage components, like batteries are, but feature a different set of characteristics. Compared to batteries, supercapacitors have a superior cycle life, are capable of providing higher power bursts, and charge quickly among other unique characteristics.

RelatedPosts

Supercapacitor Cables Enable Better Batteries

Cable-Based Supercapacitors Extend Life of AR/VR Headsets

Flexible Cable Supercapacitor Application in EVs and HEVs

Figure 1 the constant current charge/ discharge, the voltage drop due to ESR, and the maximum and minimum charges used during testing.

There are a few methods to evaluate a supercapacitor using testing equipment, such as a potentiostat. A common technique is to use a Galvanostatic Charge-Discharge (GCD) curve. A GCD curve is produced by charging and discharging the CBC with constant current to a specific voltage, as shown in Figure 1.

As current is applied, the voltage across the CBC steadily increases until a specific voltage is reached. In this case, the CBC is charged to 1.6V with 1.25A. Once the CBC reaches 1.6V, the CBC is then discharged to 0.1V with 1.25A. The capacitance and other important specifications can be calculated using the known charge/discharge current, voltage values, and time stamps recorded by the testing equipment.

Building Modules

Building flexible supercapacitor modules:

Individual cells of the CBC can be connected in series and parallel to meet the requirements of a given application (IoT devices, wearables, solar panels, power supplies, IT equipment, automotive, defense, etc…). This is a common practice in the supercapacitor industry, especially because a single supercapacitor typically has a voltage rating below 5V. When supercapacitors are connected in series and parallel, they form what is called a module. While an individual cell may not meet the requirements for an application, connecting several cells together in a module might.

Since many applications operate at a voltage which is higher than what a single cell can handle, CBCs can be connected in series with one another so that the module of CBCs can handle a higher operating voltage. The following formula can be used to determine how many CBC cells need to be connected in series for an application:

Number of Series Connected Cells = Max Operating Voltage / 1.6V

Where 1.6V is the voltage rating of a single CBC cell.

In an ideal CBC module, where each CBC cell has a similar ESR, the overall voltage applied to the CBC module will be equally divided between each cell. This results in a lower voltage applied across each individual CBC. In designing a CBC module, in general, it is a good idea to design the module so that each individual CBC cell is charged to less than their maximum voltage rating. By reducing the voltage applied to each individual CBC cell, the supercapacitors will be safer and have a longer lifecycle since they are not running at maximum capacity continuously.

Figure 2, the 5V applied to the CBC system is evenly distributed across each cell. Although each cell is capable of a voltage rating of 1.6V, it is, in general, a good idea to go under the maximum capabilities of the CBCs.

There is a tradeoff with this approach. While a series connection increases the voltage limit, it decreases the effective capacitance and increases the ESR of the module. Alternatively, a parallel connection will increase the capacitance and decrease the ESR but the voltage rating will remain the same

Since modules are made up of multiple individual cells, the module’s performance is can be described in equivalent units for capacitance, ESR, voltage, etc. The equivalent units are represented as “eq” and are understood to be the value after algebraic modification.

Each unit of the CBC features 3F capacitance, 0.25Ω ESR, and a 1.6V rating. For this reason, these formulas may be simplified as:

Once a module is formed, the equivalent specifications of the module can be used to calculate power and energy using the same formulas as single cell evaluation.

Using these equations, a variety of supercapacitor modules can be formed with the CBC. For example:

A simplified approach to designing CBC modules is to:

  1. Understand the max operating voltage of the application
  2. Calculate the number of cells required in series to meet the voltage requirement
  3. Understand the goals of the application (general design goals such as energy storage and performance requirements
  4. Connect cells in parallel to meet that design goal

In the series connections for the CBC modules, a balancing circuit may be considered. While the individual cells of the CBC module can be very close in performance, they are never the exact same, meaning that over time the voltage will deviate slightly from one another. This can create an unbalanced CBC module. While this deviation is small and may not create any issues, a balancing circuit may be necessary for some applications.

We hope this article explained the fundamentals behind designing a flexible supercapacitor module using our CBCs across any project. We are excited to hear about your project and how we may help you build the technologies of the future.

Reading Flexible Supercapacitor Datasheets

Reading Flexible Supercapacitor Datasheets (and why it matters)

Capacitech Energy, Inc was founded to commercialize technologies that enable the future we want to live in. Alongside the University of Central Florida, we developed novel supercapacitor technology built like no supercapacitor before it to optimize designs and unlock performance.

Supercapacitors are a very exciting technology: capable of charging quickly, providing bursts of power, and surviving hundreds of thousands of cycles. Capacitech produces a wire-like and flexible supercapacitor called the Cable-Based Capacitor (CBC). This flexibility gives engineers new design opportunities through a placement advantage that helps them overcome the tradeoffs they typically face. Imagine a future where supercapacitors (energy storage components) are hidden; out of sight and out of mind.

The future is better with flexible supercapacitors. One of the first steps to building that future is helping researchers and engineers understand the CBC and design it into their products. This article is written as an introduction to the CBC’s datasheet.

Introduction to Datasheets:

Datasheets are instruction manuals provided by manufacturers for electronic components to explain what their product does and how to use it correctly. They may seem lengthy and complicated at first, but contain crucial information necessary for proper use and design that mitigate mistakes and risks. The material you will find in a datasheet will contain details such as, but not limited to:

o   Typical device performance specifications

o   Absolute minimum/maximum requirements and properties

o   Testing without compromising the device

o   Proposed uses

For the CBC, like other supercapacitors, the pertinent information is voltage rating, capacitance rating, equivalent series resistance (ESR), leakage current, energy storage capacity, peak power capability, and cycle life.

Voltage Rating:

This is the highest voltage that can be continuously applied to the supercapacitor, without failure and/or damage. The voltage rating is determined by the materials used inside the supercapacitor. Exceeding the voltage rating can damage the CBC’s performance, reduce its operating life, or damage its enclosure leading to a leak.

Capacitance Rating:

Capacitance refers to a supercapacitor’s ability to store energy in the form of an electrical charge. Capacitance indicates how much energy the CBC can store and is measured in the unit known as the Farad. The capacitance, energy storage capacity, and other important characteristics of the CBC can be determined by a Galvanostatic Charge/Discharge (GCD) curve. A GCD curve is produced by charging and discharging the CBC with constant current, as shown in the figure.

Capacitance can then be calculated using the results of the GCD curve and the formula  i = C dv/dt , which represents the current being equal to the relationship of capacitance and the ratio of change over voltage and change over time.

Equivalent Series Resistance:

Equivalent Series Resistance (ESR) is the internal resistance of a supercapacitor measured in ohms. Its value is inversely proportional to a supercapacitor’s peak power capability. ESR is calculated by analysis of the GCD curve used to calculate capacitance by measuring the instantaneous voltage drop seen when the supercapacitor switches to its discharging cycle.

Leakage Current:

No supercapacitor is ideal. For this reason, when supercapacitors are modeled for real world analysis, two resistors are included: one is in series with the supercapacitor to represent ESR and the other is in parallel with the supercapacitor to represent leakage current. Leakage current can be thought of as the current required to keep the supercapacitor charged. To determine leakage current of a supercapacitor, connect a supercapacitor to a power supply and monitor the current draw over time (at least a few hours), this is the current required to keep the supercapacitor charged representing the leakage current.

Energy:

The CBC is a supercapacitor, which is an energy storage component at its core. The energy storage capacity of a supercapacitor is calculated by E = 1/2 C V^2 (measured in Joules), proportional to a supercapacitor’s capacitance and the voltage it is charged to (not to exceed its voltage rating). As capacitance and voltage increase, so does the energy storage. This formula can also be used for supercapacitor modules, where supercapacitor cells are connected in series and/or parallel. Supercapacitors are known to have a low energy density, meaning they do not store a lot of energy per unit mass compared to alternatives like batteries and fuel cells. Supercapacitors are not generally used for long-term energy storage needs. U_density = E_max / mass  (measured in watt-hours per kilogram).

Power:

Supercapacitors like the CBC are designed for short burst, high-power applications given their high power density. Supercapacitors are designed to respond to sudden fluctuations in power. A supercapacitor’s peak power capability is largely depended on ESR. P_Density = [0.12 * V^2] / [ESR_DC * mass]  (measured in watts per kilogram).

Cycle Life:

Although there is a belief that supercapacitors are capable of near infinite cycles in a life, they do have a limit. This idea came from the comparison to batteries, to which supercapacitors are vastly superior in regards to cycle life. The cycle life is the number of times the CBC may be charged and discharged, completing one cycle. To determine cycle life, the CBC is charged to the voltage rating of 1.6V at the current rating of 1.25A and discharge to 0.1V at 1.25A, completing one cycle. The process is repeated again and again until end of life (EOL) capacitance and ESR values are recorded.

Source: Capacitech Energy

Related Posts

Capacitors

Cornell Dubilier Unveils Y2 Class Interference Suppression Capacitors

4.10.2023
2
Capacitors

Ceramic Capacitors Supporting DC Link Filters

3.10.2023
21
Capacitors

Resonant MLCC OBC Application Guide

2.10.2023
92

Upcoming Events

Oct 3
October 3 @ 12:00 - October 5 @ 14:00 EDT

Design and Test of Non-Hermetic Microelectronic

Oct 11
11:00 - 12:00 CEST

Stretchable Electronics

Oct 16
October 16 - October 19

Digital WE Days 2023 – Virtual Conference

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Resonant MLCC OBC Application Guide

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Coefficient of Linear Thermal Expansion on Polymers Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0

Newsletter Subscription

 

Archive

2023
2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.