• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Google Pixel 2 XL teardown shows how its squeezable sides work with resistor strain gauges

20.10.2017

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

16.5.2022

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

16.5.2022

European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

16.5.2022

Tecate Releases Small-Cell 3V Supercapacitors

16.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Supercapacitors Assist Diesel Locomotives Start At Winter Conditions

    Bourns Releases High Current Shielded Power Inductor in Compact Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Supercapacitors Assist Diesel Locomotives Start At Winter Conditions

    Bourns Releases High Current Shielded Power Inductor in Compact Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Google Pixel 2 XL teardown shows how its squeezable sides work with resistor strain gauges

20.10.2017
Reading Time: 2 mins read
0 0
0
SHARES
50
VIEWS

source: The Verge news

The Pixel 2 comes out to market recently, and so of course iFixit has torn open the first unit it could find to let us see what’s going on inside. iFixit says there are actually two rows of strain gauges, giving the Pixel even more sensitivity and “allowing it to detect even the slightest of deflections.”

RelatedPosts

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

The site published its inside look at the Pixel 2 XL and while there aren’t a ton of surprises to be found (the camera module is pretty large; Google is hiding a secret chip), cracking open the phone does reveal one thing we didn’t know a ton about: how the Pixel’s Active Edge feature actually works.

Active Edge is Google’s name for the feature that lets you squeeze the Pixel 2’s sides to open up the Google Assistant. It turns out, it works using a pair of “strain gauges” on either side of the phone. The setup looks like this:

Pixel 2 XL Active Edge sensor

photo source: iFixit

What you’re looking at is a series of steel blocks with resistors between them, sandwiched inside a pair of flexible circuit boards, according to iFixit. Those resistors are the strain gauges. They’re sensitive to being flexed, so the Pixel can pick up changes in the electrical signal that goes through them. That means when you squeeze the outside of the Pixel, you’re ever so slightly bending the case, deforming the resistors, and giving the Pixel some data on how much they’re being bent.

iFixit says there are actually two rows of strain gauges on each sensor, giving the Pixel even more sensitivity and “allowing it to detect even the slightest of deflections.” That increased range is likely also what allows Google to offer a variety of pressure settings for when the Active Edge feature goes off. This seems to be the same setup that HTC used in the U11 for an identical feature called Edge Sense (which isn’t terribly surprising — HTC built the smaller Pixel 2).

It turns out this is pretty similar to how Apple’s Force Touch trackpads work, too. The trackpads don’t move, but they’re still able to register a click when force is applied to them. iFixit found a series of “tiny strain gauges” beneath the trackpad when it open one up two years ago, and the site had expected to find something similar inside the Pixel 2.

You can head over to iFixit to check out the rest of what’s inside this year’s bigger Pixel here.

featured picture source: iFixit

Related Posts

Capacitors

Electronic Component Prices Increase in Q1 2022

4.5.2022
140
Automotive

Stackpole Releases High-Power Wide Terminal Thick Film Chip Resistors

4.5.2022
10
Automotive

Vishay Releases Wirewound Resistors for EVs

4.5.2022
51

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Introduction to Capacitor Based Power Factor Correction Circuits

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.