Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Wk 26 Electronics Supply Chain Digest

    Learn How Supercapacitors Enhance Power System in Knowles eBook

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Wk 26 Electronics Supply Chain Digest

    Learn How Supercapacitors Enhance Power System in Knowles eBook

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

High-Density Hybrid Lithium Ion (Super)PowerCapacitors Deliver Record Density

11.3.2020
Reading Time: 3 mins read
A A

Chinese company Shenzhen Toomen New Energy developed and producing hybrid lithium ion “power capacitors” that can store as much energy as lithium batteries, but with much higher charge/discharge rates, a safe operating temperatures, long lifespans and no risk of explosion.

The highest density cells were getting between 200-260 Wh/kg, every bit the equal of today’s leading commercial lithium batteries but with a higher charge and discharge rate, and no risk of explosion. The power-focused variants were delivering densities of 80 and 100 Wh/kg, and were charging and discharging at 10 and 20C.

RelatedPosts

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

Sumida Announces New DC Common Mode Choke Coil Series

KYOCERA AVX Releases New 3dB Hybrid Couplers

How do they work?

The power capacitor cells design is sitting halfway between a regular carbon-based supercapacitor and a lithium battery cell. Capacitors charge statically and thus charging and discharging quickly. Batteries use chemical reactions to store and release charge, which makes them slower, gives them a higher energy density and also their tendency to catch fire and explode due to dendrite formation..

The hybrid design uses one electrode similar to a supercapacitor, and the other includes lithium a little like a battery
The hybrid design uses one electrode similar to a supercapacitor, and the other includes lithium a little like a battery; source: Kurt.Energy

Toomen’s powercapacitors have one “activated carbon” electrode made from a variant of graphene, and the other is based on a lithium compound, but compared with lithium-ion, there’s no active lithium in there. There’s no chemical reaction; the charges are stored statically, like a supercapacitor. One electrode has some battery effect, but what you don’t have is a free flow of lithium ions floating in the battery that can form potentially dangerous dendrites.

There are currently two variants, one that prioritizes energy density and the other delivering maximum power rates. The high density cells are currently offering between 200-260 Wh/kg, with rated power densities around 300-500 W/kg. The high power cells are getting 80-100 Wh/kg, with power densities around 1,500 W/kg, peaking at up to 5,000 W/kg.

A new prototype pouch cell under development feature even higher volumetric density more than twice the volumetric density of the highest density cylindrical cells at up to 973 Wh/liter.

In the tradeoff between energy density and power density, Toomen's power capacitors offer some impressive advantages
In the tradeoff between energy density and power density, Toomen’s power capacitors offer some impressive advantages; source: Kurt.Energy

To put those numbers in context, a current model commercial ultracapacitor like the DuraBlue from Maxwell offers a much, much lower energy density of just 8-10 Wh/kg but a sky-high power density around 12,000-14,000 W/kg. A good lithium battery, on the other hand, typically offers 150-250 Wh/kg and power-wise is somewhere around the 250-350 W/kg area. So while it’s clearly a trade-off between power and energy storage, the Toomen power capacitors certainly offer power advantages at the high density end of the scale, and huge density advantages at the high-power end of the scale.

a small Belgian company Altreonic – Kurt.Energy is already making sales into the automotive, energy storage and solar markets, with the key driver being the Toomen cells’ ability to work flawlessly across wide range of temperatures. Munich University is evaluating the power capacitors for a possible role in deep space, where temperatures can reach -200 ºC (-328 ºF) that’s under testing for some time.

Source: Kurt.Energy

Related

Source: New Atlas

Recent Posts

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

1.7.2025
4

Sumida Announces New DC Common Mode Choke Coil Series

1.7.2025
4

SCHURTER Unveils High Voltage Fuses for EV Applications

30.6.2025
4

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
20

Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

30.6.2025
10

Learn How Supercapacitors Enhance Power System in Knowles eBook

30.6.2025
6

TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

27.6.2025
14

YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

27.6.2025
28

YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

27.6.2025
18

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

26.6.2025
44

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version