• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

How to Use a Ferrite Bead in Your Design to Reduce EMI

20.4.2022

Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

26.5.2022
Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

26.5.2022

Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

26.5.2022

Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

25.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

    Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

    Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

    Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

    Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

    A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology

    Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

    TDK Introduces Improved Performance PFC Capacitors

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

    Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

    Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

    Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

    Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

    A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology

    Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

    TDK Introduces Improved Performance PFC Capacitors

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

How to Use a Ferrite Bead in Your Design to Reduce EMI

20.4.2022
Reading Time: 4 mins read
0 0
0
SHARES
4.7k
VIEWS

How to reduce EMI using ferrite beads? Ferrite cores can be a bit tricky, which is why it’s important to first understand the theory behind them. Most electronic components are essentially plug and play; however, ferrites have to be designed into your system. Once you know the theory, it’s time to move on to practical uses like LC filters, ground and power frequency plane separation, and source noise filtering.

Ferrite LC Filters
Designers are often tempted to think of ferrite beads as low pass filters. They do block high frequencies, but only in a specific band. Above that band their inherent capacitance frequency takes over. While a bead by itself can’t make a low pass filter, when combined with a bypass capacitor it can. Then you get what is essentially an LC (inductor and capacitor) filter. One major problem to look out for when using a ferrite bead like this is LC resonance.

RelatedPosts

Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

First things first, if you’re using a ferrite bead in the power supply line of your circuit you need a bypass capacitor. At low frequencies ferrite beads act as inductors, which oppose changes in current. That means if your integrated circuit is trying to draw a spike of current, the bead will resist that peak and can hinder your circuit’s operation. A bypass capacitor is needed to store up charge that can provide those power spikes. Bypass capacitors are also just a good idea in general.

Once you have your capacitor and ferrite in place, you can start filtering out high frequencies. A ferrite bead has a couple advantages over the normal inductor used in an LC filter. Ferrite beads will give you a steeper roll-off at lower frequencies. They also have some inherent resistance, which helps dampen possible resonance frequency. While they have some damping capabilities, LC resonance can still occur. There is an especially great risk of this when using larger capacitors. If you really want to use a large capacitor, that risk can be mitigated by adding additional damping or limiting resonance in other ways. If resonance does occur, it can lead to a gain of up to 10 dB, so take care to design your filter to avoid resonance.

Mixed Signal Ground/Power Plane Connection
One of the primary ways that EMI can propagate through a circuit is through the ground and power planes. This is especially common in mixed signal circuits, where a single ground/power plane impedance is used for both analog and digital signals. It’s therefore best to have separate ground/power planes, but the grounds still need to be referenced to the same relative voltage. These problems create quite the quandary, one that ferrite beads can help solve.

Ferrite beads can be used to connect separate analog and digital ground/power planes. In this configuration, both planes are referenced to the same voltage, but are insulated from one another. A carefully chosen bead can block noise that would normally be transferred directly from one plane to another. Not every circuit should use separate ground planes connected by a ferrite bead, so check that this structure is the best for you before using it.

General Noise Filtering
Ground and power planes aren’t the only parts of your circuit that have noise problems. You also may have noise coming from digital components, a DC/DC converter, or the power line coming in. Ferrite beads can help filter out noise from all of these sources.

In the case of noisy components, you can use ferrite beads to isolate as many of them as you want to. You will presumably have bypass capacitors for each of your digital ICs, so adding ferrite beads will form the aforementioned LC filter. These filters will attenuate noise coming from the components and help keep your circuit clear of EMI.

Some analog circuits are powered by a switching DC/DC converter. You may be worried about these power supplies feeding noise into the system, but you’re probably not concerned about the analog chips sending noise out. In this case you can put a ferrite bead in line with the DC/DC converter and insulate your analog circuitry from EMI on the power rail.

You may be worried about noise coming in from outside your board. Oftentimes EMI is introduced to PCBs through their initial power source. Ferrite beads are great for filtering out that kind of high frequency noise. In fact, that’s their most common usage.

Whether your PCBs are blasting off into space or staying here on the humble Earth, they need to be protected from EMI. Ferrite beads can do that, either by attenuating a specific band of high frequencies, or acting as an LC filter when combined with a bypass capacitor. If you’re going to use a bead in an LC filter, be sure to watch out for LC resonance. You can also use ferrite beads to separate ground and power planes in mixed signal circuits, and filter out noise in general.

Source: Altium

Related Posts

Aluminium Capacitors

Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

25.5.2022
17
A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology
Inductors

Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

24.5.2022
20
Applications e-Blog

Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

23.5.2022
46

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.