• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication
(a) Schematic of a 2T0C DRAM cell, where the storage element is the oxide capacitance Cox of the read transistor; (b) example of a schematic top-view of a 2T0C DRAM array on a single planar level. The A-A’ cross-sectional direction indicates that the array density can be increased by (c) stacking several layers of the 2T0C cell. Source: IMEC

Imec Demonstrates Capacitor-less IGZO-Based DRAM Cell With >400s Retention Time

15.12.2020

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

16.5.2022

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

16.5.2022

European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

16.5.2022

Tecate Releases Small-Cell 3V Supercapacitors

16.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Supercapacitors Assist Diesel Locomotives Start At Winter Conditions

    Bourns Releases High Current Shielded Power Inductor in Compact Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    3D Systems to Deliver 3D Printed RF Components for Satellite Applications

    Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

    TDK to Build New Automotive MLCC Production Plant in Japan

    Supercapacitors Assist Diesel Locomotives Start At Winter Conditions

    Bourns Releases High Current Shielded Power Inductor in Compact Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Imec Demonstrates Capacitor-less IGZO-Based DRAM Cell With >400s Retention Time

15.12.2020
Reading Time: 2 mins read
0 0
(a) Schematic of a 2T0C DRAM cell, where the storage element is the oxide capacitance Cox of the read transistor; (b) example of a schematic top-view of a 2T0C DRAM array on a single planar level. The A-A’ cross-sectional direction indicates that the array density can be increased by (c) stacking several layers of the 2T0C cell. Source: IMEC

(a) Schematic of a 2T0C DRAM cell, where the storage element is the oxide capacitance Cox of the read transistor; (b) example of a schematic top-view of a 2T0C DRAM array on a single planar level. The A-A’ cross-sectional direction indicates that the array density can be increased by (c) stacking several layers of the 2T0C cell. Source: IMEC

0
SHARES
549
VIEWS

This week, at the 2020 International Electron Devices Meeting, imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, presents a novel dynamic random-access memory (DRAM) cell architecture that implements two indium-gallium-zinc-oxide thin-film transistors (IGZO-TFTs) and no storage capacitor.

DRAM cells in this 2T0C (2 transistor 0 capacitor) configuration show a retention time longer than 400s for different cell dimensions – significantly reducing the memory’s refresh rate and power consumption. The ability to process IGZO-TFTs in the back-end-of-line (BEOL) reduces the cell’s footprint and opens the possibility of stacking individual cells. These breakthrough results pave the way towards low-power and high-density monolithic 3D-DRAM memories.

RelatedPosts

TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

Scaling traditional 1T1C (one transistor one capacitor) DRAM memories beyond 32Gb die density faces two major challenges. First, difficulties in Si-based array transistor scaling make it challenging to maintain the required off-current and world line resistance with decreasing cell size. Second, 3D integration and scalability – the ultimate path towards high-density DRAM – is limited by the need for a storage capacitor. Imec presents a novel DRAM architecture that responds to both challenges, thereby offering a scaling path towards low-power high-density 3D-DRAM memories.

The new architecture implements two IGZO-TFTs – which are well known for their very low off-current – and no storage capacitor. In this 2T0C configuration, the parasitic capacitance of the read transistor serves as the storage element. Resulting DRAM cells exhibit a retention time >400s thanks to an extremely low (extracted) off-current of 3×10-19A/µm. These breakthrough results were obtained for optimized scaled IGZO transistors (with 45nm gate length) processed on 300mm wafers. Optimization was directed towards suppressing the impact of oxygen and hydrogen defects on both on-current and threshold voltage – one of the main challenges for developing IGZO-TFTs.

Gouri Sankar Kar, Program Director at imec: “Besides the long retention time, IGZO-TFT-based DRAM cells present a second major advantage over current DRAM technologies. Unlike Si, IGZO-TFT transistors can be fabricated at relatively low temperatures and are thus compatible with BEOL processing. This allows us to move the periphery of the DRAM memory cell under the memory array, which significantly reduces the footprint of the memory die. In addition, the BEOL processing opens routes towards stacking individual DRAM cells, hence enabling 3D-DRAM architectures. Our breakthrough solution will help tearing down the so-called memory wall, allowing DRAM memories to continue playing a crucial role in demanding applications such as cloud computing and artificial intelligence.”

Source: IMEC

Related Posts

Capacitors

Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

16.5.2022
3
Aerospace & Defence

Tecate Releases Small-Cell 3V Supercapacitors

16.5.2022
3
Automotive

TDK to Build New Automotive MLCC Production Plant in Japan

10.5.2022
108

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Introduction to Capacitor Based Power Factor Correction Circuits

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.