• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Implantable Electronics for Cerebral Aneurysm Monitoring

9.8.2019

Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

25.5.2023

Murata Unveils Compact MLCCs with Extended Creepage Distance

25.5.2023

Properties and Characteristics of Crystal Units

24.5.2023

YAGEO Releases High Capacitance 630V NP0 MLCC for Higher Power Density and Efficiency Circuits

24.5.2023

Skeleton Acquires Former Batteries Plant to Increase Manufacturing Capacity

23.5.2023

TDK Enhances Efficiency of Materials Development Using Advanced AI

23.5.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

    Murata Unveils Compact MLCCs with Extended Creepage Distance

    Properties and Characteristics of Crystal Units

    YAGEO Releases High Capacitance 630V NP0 MLCC for Higher Power Density and Efficiency Circuits

    Skeleton Acquires Former Batteries Plant to Increase Manufacturing Capacity

    TDK Enhances Efficiency of Materials Development Using Advanced AI

    Transformer Optimal Operating Frequency for Phase-Shifted Full-Bridge Converter

    Vishay Unveils 120W High Energy Power Resistor

    Knowles Offers Build-to-Print Services for Thin Film Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Practical LLC Transformer Design Methodology

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

    Murata Unveils Compact MLCCs with Extended Creepage Distance

    Properties and Characteristics of Crystal Units

    YAGEO Releases High Capacitance 630V NP0 MLCC for Higher Power Density and Efficiency Circuits

    Skeleton Acquires Former Batteries Plant to Increase Manufacturing Capacity

    TDK Enhances Efficiency of Materials Development Using Advanced AI

    Transformer Optimal Operating Frequency for Phase-Shifted Full-Bridge Converter

    Vishay Unveils 120W High Energy Power Resistor

    Knowles Offers Build-to-Print Services for Thin Film Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Fast 25kW SiC EV Charger Design; OnSemi and Würth Elektronik Webinar

    PFC Inductor Magnetic Design Considerations; Frenetic Webinar

    Introduction to Capacitor Technologies; WE Webinar

    Self-Adjusting and Economical Switched Capacitor Balancer for Serially Connected Storage-Cells

    How to Design EMC Efficient Power Converter; WE Webinar

    Selecting Capacitors for High Power Buck-Booster Converters

    How to use Off-the-Shelf Transformers in Switching Power Supplies

    Simple Capacitors Pre-Charger Based on Unique ‘Floating Integrator’

    Practical LLC Transformer Design Methodology

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Implantable Electronics for Cerebral Aneurysm Monitoring

9.8.2019
Reading Time: 3 mins read
0 0
0
SHARES
0
VIEWS

Source: Advanced Science News

By Amanda Mickley-Gass

RelatedPosts

Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

Murata Unveils Compact MLCCs with Extended Creepage Distance

Properties and Characteristics of Crystal Units

A fully printed, wireless, stretchable, implantable biosystem that offers batteryless, real-time monitoring of cerebral aneurysm hemodynamics is developed.

Recent advances in microfabrication techniques have allowed for the development of miniature, implantable electronics. When combined with soft materials, these implantable electronics can be used in applications such as stretchable and flexible biosensors. Important requirements for the use of biosensors include wireless monitoring capabilities, and manufacturing reliability and scalability. Until now, implantable electronics often have limited readout distances and rely on slow, low-throughput fabrication procedures. They are also often ridged and bulky, making them incompatible for soft tissues or blood vessels.

A challenging implant location is in the cerebral arteries. Aneurysms exist in these contoured and narrow arteries in 6% of the population, making the development of effective treatments and follow-up monitoring critical. In the vascular system, implantable sensors must be stretchable and flexible while maintaining a low profile in order to not disrupt blood flow.

In a study recently published in Advanced Science, Robert Herbert, Woon-Hong Yeo, and co-workers from the Georgia Institute of Technology and Hanyang University introduce a fully passive, wireless, low-profile capacitive sensor and coil inductor with enhanced readout distance fabricated via aerosol jet printing (AJP).

Ag deposition with an ultrasonic atomizer (left) and enlarged view of patterned Ag on PI (right).

To fabricate the sensor, AJP was used to print four aligned layers followed by seamless integration onto a soft elastomer. In short, the sacrificial polymethyl methacrylate (PMMA) layer was spin-coated on a glass substrate, followed by a polyimide (PI) layer (dielectric layer) for transfer, which was then cured.

A silver nanoparticle (AgNP) ink (capacitive electrode) was then printed and sintered on a plasma-treated PI layer, followed by printing of a second PI and Ag layer. The PMMA was then dissolved in an acetone bath for transfer to the elastomer.

This integration process enables the sensor to conform to stents with high flexibility and stretchability and can be deployed via conventional catheter procedures.

A new inductive coupling method was also optimized and used to monitor hemodynamics via a wireless detection method at distances that surpass existing devices (6 cm). As a proof of concept, the method was tested through air, saline, beef, and in two biomimetic cerebral aneurysm models.

Mechanics of the printed biosensor for catheter-based deployment in a target vessel.

 

The system demonstrates significant improvement in both implantation size and readout distance compared to other systems. The inductive coupling method is also an improvement in terms of the ratio of wireless readout distance and sensor cross-section area. The wireless distance allows for the integration of the system with cerebral aneurysm sensors for monitoring hemodynamics in the brain, which require an average readout distance of 3–6 cm.

Currently, a restraint of the system is the integration of an implantable coil with the stent and sensor to achieve a complete implantable package, which the team hopes to realize in the near future.

 

 

featured image and images credit: Georgia Institute of Technology and Hanyang University

Related Posts

Capacitors

Introduction of Knowles MLCCs StackiCap, its Benefits and Applications

25.5.2023
19
Market & Supply Chain

TDK Enhances Efficiency of Materials Development Using Advanced AI

23.5.2023
21
Inductors

Transformer Optimal Operating Frequency for Phase-Shifted Full-Bridge Converter

22.5.2023
19

Upcoming Events

May 31
11:00 - 12:00 UTC-5

Why GFCIs with “Ground Check” Are the Future of Electrical Safety

Jun 1
June 1 @ 12:00 - June 2 @ 14:00 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Jun 13
June 13 @ 12:00 - June 16 @ 14:00 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Filter Q Factor Explained

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.