• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Integrated Cable-Based Flexible Supercapacitors for Energy Harvesting Technologies in IoT

15.3.2021

GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

18.5.2022

Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

18.5.2022

Flexible Cable Supercapacitor Application in EVs and HEVs

17.5.2022

Snubber Capacitor Selection for SiC-Based Switching Converters

17.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    TAIYO YUDEN Launches Wire-Wound Automotive Power Inductors

    Skeleton Announces Agreement with Polish ZPUE for Rail Energy Storage Solutions

    European Electronic Components Distribution Under Strong Demand and Allocation in Q1 2022

    Tecate Releases Small-Cell 3V Supercapacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Flat Wire Inductors for Electrical Cars; WE Webinar

    Ferrite Filter Features and Selection Guide; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Integrated Cable-Based Flexible Supercapacitors for Energy Harvesting Technologies in IoT

15.3.2021
Reading Time: 5 mins read
0 0
0
SHARES
177
VIEWS

Supercapacitors have become increasingly attractive solutions for energy harvesting technologies. Capacitech is manufacturing flexible supercapacitor, the Cable-Based Capacitor (CBC), that provides space saving advantages over traditional supercapacitor technologies.

Energy harvesting technologies, such as indoor solar cells, are gaining popularity in battery powered Internet of Things (IoT) devices, commonly found in applications like wearables and SmartCity ecosystems. The reason is simple, it is expensive to replace batteries in IoT devices and energy harvesting technologies can be leveraged to make those same IoT devices battery free. It is so expensive to replace these batteries because there are typically many devices deployed over a large area, and these IoT devices are typically used on the edge (a.k.a hard to reach places).

RelatedPosts

GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

Flexible Cable Supercapacitor Application in EVs and HEVs

Energy Harvesting Technology

There are several types of energy harvesting technologies common to the market. According to Magnetic Nanostructured Materials, 2018, “Energy harvesting (EH) can be defined as a process wherein the sources such as mechanical load, vibrations, temperature gradients and light, etc., are scavenged and converted to obtain relatively small levels of power in the nW-mW range [1–3].”

Common energy harvesting options include:

  • Solar Cells
  • Radio Frequency Harvesting
  • Vibration Harvesting

While gaining popularity, there are two major challenges to overcome. First, they lack the peak-power capability to transmit data. Second, they are an unreliable (intermittent) energy source.

A Lack of Power

Energy harvesting technologies provide enough power for devices in their sleep state, but too little power to wirelessly transmit data (via bluetooth, Wi-Fi, cellular options) from the edge it is collected from. In other words, the energy harvesting technology might power sensors on the IoT device to collect information, but cannot send that information anywhere useful or impactful.

For example, an IoT device (such as an air quality monitor in a SmartCity application that takes 6 measurements per hour and transmits data one time per hour) might draw:

  • 10mA when in sleep mode (~90% of the time)
  • 200mA when collecting data (~10% of the time)
  • 1500mA when transmitting data (<1% of the time)

Even in an ideal environment, energy harvesting technologies lack the peak power capability required when transmitting data. For <1% of the time, something 150x more powerful is needed. As new features and capabilities are added to IoT devices, and as they are deployed in more extreme/remote locations, more power will be needed.

Intermittent Power

In addition to lacking enough power for data transmission, energy harvesting technologies are also notoriously intermittent and dependent on environmental factors.

For example, a solar cell might generate 150mW in full direct sunlight, but only 50mW in a shadow (66% less). A vibration energy harvesting device might generate 35mW at 50Hz, but less than 5mW at a frequencies less than 48Hz or greater than 52Hz.

This forces designers and engineers to reconcile an engineering tradeoff. They can choose to either starve their load of power when no energy is being harvested (like a solar cell in the dark), or they can add an energy storage to their product (which they were trying to avoid by using an energy harvesting technology).

An Integrated Supercapacitor Solution?

Capacitech produces a flexible, wire-like supercapacitor that is designed to complement energy sources (such as energy harvesting modules and batteries) by providing peak power assistance and miniaturized electronics by leveraging its form factor.

Cable Based Capacitor.png

While energy harvesting technologies are gaining popularity, they require an energy storage device to overcome their lack of power and intermit nature. While batteries can be used, their short cycle (or service) life is less than ideal given the cost to replace batteries. Supercapacitors have become increasingly attractive solutions as they can provide more than enough power for data transmission and have very cycle life. Supercapacitors face the challenge of being restricted to use on printed circuit boards, where space is limited.

Capacitech’s flexible supercapacitor, the Cable-Based Capacitor (CBC) , has space saving advantages over traditional supercapacitor technologies. It can be routed around printed circuit boards in a way to use little to no real estate (surface area) on the circuit, or can be used off-board and inside the infrastructure of the product or system.

About the CBC.

The Cable-Based Capacitor (CBC) is a flexible supercapacitor (energy storage device) featuring over 3F of capacitance. It is designed to be used where no supercapacitor has gone before, off the printed circuit board (PCB) and integrated into other parts of a product or system, such as inside a wiring harness, where it can charge and discharge its power or energy very quickly.

Why is it unique?

The CBC is unique because of its flexible and wire-like form factor. While traditional supercapacitors are rigid and restricted to use on a PCB, the CBC is leveraging its flexible and wire-like form factor to build a discrete and distributed network of energy storage throughout the world’s infrastructure; inside of wiring harnesses, power cords, shoes and other wearables, electronics enclosures, etc… The CBC also takes up less surface area on circuit boards than traditional supercapacitors too.

Where can it be used?

The CBC is best in energy storage applications where there is a size, space, or aesthetic constraint on the product or system.

See Capacitech web site for more details and the video demonstration of an application example. The CBC is now also available at Mouser Electronics here.

Source: Capacitech

Related Posts

Capacitors

GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

18.5.2022
5
Capacitors

Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

18.5.2022
5
Automotive

Flexible Cable Supercapacitor Application in EVs and HEVs

17.5.2022
61

Popular Posts

  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.