Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Behavior – Current Transfer and Hidden Feedback

    Littelfuse Completes Acquisition of Basler Electric

    Isabellenhütte Releases Automotive Pulse Load Resistors

    Molex Introduces Modular Wire-to-Wire Automotive Connectors

    Vishay Releases Automotive Glass Protected 0402 NTC Thermistor

    Current Sense Transformer and its Calculation

    Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

    TDK Unveils Small Automotive Power Inductors

    YAGEO Launches Hybrid Polymer Radial Capacitor for High-Reliability Automotive and Power Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Behavior – Current Transfer and Hidden Feedback

    Littelfuse Completes Acquisition of Basler Electric

    Isabellenhütte Releases Automotive Pulse Load Resistors

    Molex Introduces Modular Wire-to-Wire Automotive Connectors

    Vishay Releases Automotive Glass Protected 0402 NTC Thermistor

    Current Sense Transformer and its Calculation

    Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

    TDK Unveils Small Automotive Power Inductors

    YAGEO Launches Hybrid Polymer Radial Capacitor for High-Reliability Automotive and Power Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

KYOCERA AVX Launches Industry’s First Evaluation Board for Testing Antenna Band Switching Performance

5.1.2022
Reading Time: 4 mins read
A A

The new Antenna Band Switching Evaluation Board is engineered to reduce the number of device design iterations, improve accuracy, and hasten product time-to-market for an expansive range of low- and high-frequency RF applications in the consumer electronics, IoT, industrial, medical, embedded systems, and utility markets.

FOUNTAIN INN, S.C. (January 5, 2022) – KYOCERA AVX, a leading global manufacturer of advanced electronic components engineered to accelerate technological innovation and build a better future, is launching the industry’s first evaluation board for testing antenna band switching performance at CES 2022 in Las Vegas. The new Antenna Band Switching Evaluation Board (1004795-EC646-01) is comprised of standard products including an embedded, universal broadband, FR4 LTE/LPWA antenna (1004795), an Ether Switch & Tune™ chipset (EC646) for band switching or aperture tuning, a battery holder to power the RF switch, a female SMA connector, and a small (45.5 x 60mm) evaluation board optimized for testing the antenna performance of standard-sized IoT devices. It is engineered to reduce the number of device design iterations, improve accuracy, and hasten product time-to-market for low- and high-band frequency (968–960MHz and 1.71–2.17GHz) 4G, 5G, broadband LTE, LTE Cat-M, NB-IoT, and cellular LPWA applications including cellular headsets and tablets, handheld electronics, embedded designs, telematics, tracking, and on-board diagnostics (OBD-II) systems, and industrial M2M, IoT, healthcare, home automation, and smart grid devices.

RelatedPosts

Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

IoT devices tend to be rather small, and compact, densely populated PCBs can significantly degrade the bandwidth and efficiency performance of the passive monopole and Planar Inverted-F antennas (PIFAs) that are widely employed in mobile phones and other modern RF electronics but are susceptible to position-based performance changes and interacting with their surroundings, which can further complicate high-density PCB layouts. Active antennas capable of band switching, also known as aperture tuning, cover a wider frequency range than passive antennas by actively switching between frequency bands. In addition, active antennas capable of covering the same frequencies as passive antennas have smaller form factors better suited to compact, high-density devices and, at equal size, will cover more frequency bands than passive antennas. Further, KYOCERA AVX active antennas, like the embedded, universal broadband, FR4 LTE antenna employed in the new Antenna Band Switching Evaluation Board, are equipped with patented Isolated Magnetic Dipole (IMD) technology, which delivers unique size and performance advantages including reduced ground plane and keep-out area size requirements for greater design flexibility, superior RF field containment for reduced interaction with surrounding components, and higher efficiency, gain, isolation, and directivity characteristics than competing solutions for higher-reliability connectivity with better return loss and minimal interference.

The new KYOCERA AVX Antenna Band Switching Evaluation Board is RoHS compliant, measures 45.5mm x 60.0mm, weighs 10.5 grams, and is rated for operating temperatures spanning -40°C to +85°C. It exhibits less than -2.5dB return loss, 50Ω unbalanced feed-point impedance, linear polarization, and 2.0W continuous wave (CW) power handling. At low-band frequencies, the Antenna Band Switching Evaluation Board exhibits peak gain ranging from -3.67dBi to -1.75dBi and average efficiency ranging from 18–30%, specifically: -3.67dBi and 18% from 890–960MHz (RF1), -2.77dBi and 22% from 700–800MHz (RF2), -2.76dBi and 20% from 700–750MHz (RF3), and -1.75dBi and 30% from 790–890MHz (RF4). At high-band frequencies spanning 1.71–2.17GHz, it exhibits peak 1.95dBi and 60% at RF3.

“The new KYOCERA AVX Antenna Band Switching Evaluation Board is the first of its kind available in the global electronics market and will help RF design engineers optimize antenna size, performance, and emissions, reduce the number of device design iterations, more easily satisfy customer and regulatory specifications, and hasten product time-to-market,” said Carmen Redondo, Global Marketing Manager, Antennas, KYOCERA AVX. “It is also optimally sized for testing the performance of IoT devices, equipped with proven KYOCERA AVX components including a high-performance, universal broadband, FR4 LTE antenna with patented IMD technology and an Ether Switch & Tune chipset, and ideal for testing consumer electronics, industrial, medical, IoT, embedded systems, and utility market applications including cellular headsets and tablets, handheld electronics, embedded designs, telematics, tracking, and on-board diagnostics (OBD-II) systems, and industrial M2M, IoT, healthcare, home automation, and smart grid devices with operating frequencies extending from 968–960MHz and 1.71–2.17GHz.”

Additional benefits of the Antenna Band Switching Evaluation Board include the ability to be trimmed down or extended with copper tape to better match the physical size of test devices with smaller or larger form factors, compatibility with KYOCERA AVX’s 1004796 embedded, universal broadband, FR4 LTE/LPWA antenna provided that the original PCB layout is mirrored, and compatibility with custom antenna designs given the assistance of technical KYOCERA AVX personnel.

KYOCERA AVX Antenna Band Switching Evaluation Boards are packaged in trays and shipped in sealed packages to help maintain optimal storage temperature and humidity conditions, which span +5°C to +40°C and 45–75% humidity. Lead-time is currently 12 weeks.

Related

Source: KYOCERA AVX

Recent Posts

Murata Releases World’s First Inner Cavity-Structure Ultra-Low-Loss LCP Flexible Substrate

10.12.2025
30

Würth Elektronik Extends its Safety Film Capacitors

3.12.2025
35

Murata Releases World First 15nF 1.25kV C0G MLCC in 1210 Size

2.12.2025
32

Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

12.11.2025
20

Murata Expands High Rel NTC Thermistors in Compact 0603M Size

12.11.2025
22

YAGEO Unveils Compact 2.4 GHz SMD Antenna

6.11.2025
19

KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

6.11.2025
22

Würth Elektronik Expands its MagI³C-VDMM MicroModules

5.11.2025
35

Murata Expands High Cutoff Frequency Chip Common Mode Chokes

5.11.2025
26

Upcoming Events

Dec 15
December 15 @ 13:00 - December 18 @ 15:15 EST

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Dec 16
17:00 - 18:00 CET

Coaxial Connectors and How to Connect with the PCB

Dec 19
12:00 - 14:00 EST

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version