• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Minimizing Capacitor Leakage Saves Lives

27.11.2019

Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

26.5.2022
Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

26.5.2022

Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

26.5.2022

Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

25.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

    Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

    Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

    Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

    Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

    A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology

    Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

    TDK Introduces Improved Performance PFC Capacitors

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

    Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

    Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

    Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

    Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

    A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology

    Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

    TDK Introduces Improved Performance PFC Capacitors

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Minimizing Capacitor Leakage Saves Lives

27.11.2019
Reading Time: 5 mins read
0 0
0
SHARES
507
VIEWS

Source: Electronics 360 news

Surface-mounted passive components, like solid tantalum capacitors, are among the most critical parts in implantable devices, especially heart defibrillators. Due to the life-or-death nature of these devices, the government has strict regulations on their design and manufacture, requiring manufacturers to take measures to insure highest levels of quality, including full lot traceability, stringent process controls, process change notification mandates and long record retention. Not every manufacturer wants to or is able to participate in this highly regulated business.

RelatedPosts

Failure Analysis of Capacitors and Inductors

Schaffner introduces low leakage current 3phase EMI filter

Understanding Capacitor Leakage to Make Smart Things Run Longer

Did you know that implantable devices make up the lion’s share (28 percent) of the market — $160 billion worth — for Class III medical devices, according to Global MedTech Market Development? Class III implantable medical devices undergo careful scrutiny by the FDA because they go inside the human body.

The key to meeting these stiff regulations for implantable devices is improving overall system reliability. For capacitors, this means improving reliability and reducing leakage current to its lowest level possible. Leakage and reliability are related and are affected by a number of other issues, which is why it’s helpful to have a basic understanding of tantalum capacitors.

Back to Basics
To appreciate the relationship between current leakage and reliability issues, one must first understand how tantalum capacitors are made. Both the construction and manufacturing details are fairly complex, and vary depending on the type of capacitor, but for now only the necessary attributes of implantable, low-leakage tantalum capacitors need to be considered.

Any capacitor consists of a cathode and an anode separated by a dielectric. What makes tantalum capacitors unique is a small pellet of tantalum that acts as the anode for the capacitor. This anode is covered by an oxide layer that functions as a dielectric, which in turn is surrounded by a conductive MnO2 cathode.

The tantalum pellet looks like a very tiny sponge. Its structure enables a high surface area for the dielectric, which means higher capacitance levels in a much smaller size than other capacitor technologies (see Fig.2.).

Figure 2. The dielectric surface area of a tantalum capacitor anode compared to its finished size. Source: AVX

Figure 2. The dielectric surface area of a tantalum capacitor anode compared to its finished size. Source: AVX

On the packaging side, there are options for traditional leaded configurations, but more recent technology advancements have seen the introduction of more size-efficient configurations.

Implantable Device Needs
Medical devices differ significantly from their consumer counterparts in terms of reliability. Medical electronics, especially for implantable medical devices, require a high degree of reliability, near-zero defects and long lives. Conversely, the main driver in consumer devices is low cost and high volume.

Life sustaining devices such as defibrillators and pacemakers get their power from non-rechargeable batteries. The lifecycle of these batteries are expected to be 10 years or more. In addition to long life, implantable batteries must be as small and compact as possible, which can greatly limit their energy capacity. Effective power management is the only way to ensure a long battery life in these circumstances.

An important source of power drain in implantable devices comes from current leakage in the capacitors. Current leakages also cause instability and component failure. Thus, controlling leakage maximizes the useful life, ensuring device stability, mitigating component failure and increasing the overall reliability of the device.

The primary culprit behind leakage currents is the presence of impurities in the tantalum capacitor’s dielectric layer. Traditionally, these capacitors were subject to burn-in conditioning and testing to identify parts with an unacceptable level of impurities. Today, statistical screening methods complement burn-in testing to ensure the highest reliability.

Beyond Burn-In

“The tantalum capacitor industry settled on Weibull burn-in and grading for quantifying quality and performance for various applications, not just medical,” explained Kevin Walker, business development manager of medical at AVX. “The Weibull grading process involves an 85C [sic] temperature burn-in cycle at up to 1.5 times the rated voltage.”

The Weibull grading test is an acknowledged technique that allows selection and reliability rating of solid tantalum capacitors. The Weibull burn-in, combined with statistical screening is very helpful to identify and remove components with unacceptable DC leakage (DCL).

DCL is a measure of efficiency in tantalum capacitors, an expression of the loss of power via current leakage through the dielectric. It is a measure of the quality of the dielectric, and thus the integrity of a capacitor. Implantable devices need the lowest leakage possible in order to extend precious battery life as long as possible.

Tantalum capacitor DCL is typically specified in microamps (μA). For example, the DCL of a 10 microfarad (μF), 10 V capacitor would be: 0.01 × 10 μF × 10 V = 1.0 μA

Reliability-sensitive passive component manufacturers use a wide variety of techniques to minimize DCL. To further improve component yields, AVX — a leading manufacturer of advanced electronic components — also implemented more conservative design rules, improved process control at critical manufacturing steps, maverick lot detection, and statistical screening to three-sigma limits to remove non-normal parts from the population, as well as leakage testing at multiple temperatures. Additionally, they restrict changes in materials, manufacturing and testing in order to comply with FDA requirements for effective change control.

The actual distribution of DCL across hundreds of manufacturing lots, compared to the common commercial specification limit of 1.0 μA and a typical medical customer specification limit of 0.250 μA, is shown in Figure 3.

Figure 3. DCL distribution of AVX 10 μf /10 V medical grade capacitors in blue. Source: AVX

Figure 3. DCL distribution of AVX 10 μf /10 V medical grade capacitors in blue. Source: AVX

As AVX improved it’s tantalum manufacturing processes over time, defect levels were reduced, and the early life failures assumed by Weibull grading were dramatically decreased. This led the company to explore alternative methods for burn-in testing. They found that a higher temperature of 125° C system burn-in at rated voltage or less, coupled with three-sigma statistical screening, was as effective as Weibull grading at removing failing components. Importantly, this optimized burn-in approach also provides a lower level of DCL and a more consistent distribution of DCL values than can be found elsewhere.

For critical applications such as defibrillators, operating on primary cell power, this low and more consistent distribution of DCL improves overall device predictability, while minimizing battery leakage.

AVX patented the above approach as their “Q-Process,” which incorporated a number of design, process, screening and conditioning enhancements. The Q-Process gives a more normal DCL population with lower probability of component failures and a reduced number of intrinsic dielectric defects within each lot. It has helped to produce medical capacitors with the lowest DCL in the industry.

Summary
Implantable medical devices must be designed and manufactured to maximize the systems operational life. Minimizing tantalum capacitor current leakage is critical to achieving maximum life from the device’s non-rechargeable battery.

AVX has a unique quality process, known as the Q-process, for ensuring the lowest leakage and highest reliability of these critical capacitors. Learn more on the AVX tantalum capacitors web page.

Related Posts

Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.
Capacitors

Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

26.5.2022
18
Aerospace & Defence

Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

26.5.2022
9
Aluminium Capacitors

Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

25.5.2022
17

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.