• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Morgan Advanced Materials Develops New Alumina Sensor to Withstand Extreme Temperatures

7.10.2016

Designing with High Voltage Resistors: 10 Top Tips for Success

29.3.2023

API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

29.3.2023

KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

28.3.2023

Optimization of 500W LLC Transformer – Case Study

28.3.2023

Flex Suppressor Explained and its Applications

24.3.2023

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Designing with High Voltage Resistors: 10 Top Tips for Success

    API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

    KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

    Optimization of 500W LLC Transformer – Case Study

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Designing with High Voltage Resistors: 10 Top Tips for Success

    API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

    KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

    Optimization of 500W LLC Transformer – Case Study

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Morgan Advanced Materials Develops New Alumina Sensor to Withstand Extreme Temperatures

7.10.2016
Reading Time: 2 mins read
0 0
0
SHARES
111
VIEWS

source: AZO Materials news

Morgan Advanced Materials, a world leader in sensor and measurement technology, has produced a new type of alumina sensor specially designed for high pressure and high temperature water and sub-metering.

RelatedPosts

Designing with High Voltage Resistors: 10 Top Tips for Success

API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

 

The sensor has been specifically developed to withstand extreme temperatures, making it ideally suited to both heat metering and high temperature fluid metering.

Manufactured using Morgan’s specially-formulated proprietary alumina, the sensor solves many of the problems associated with high temperature environments, with a focus on reducing thermal drift and zero flow offset over a large temperature range.

Morgan’s new sensor significantly minimises the flow offset because the material has been manufactured to control the thermal properties of both the internal and external structure. This enables the minimum flow rate range to be kept as small as possible, enhancing the overall accuracy of the reading.

Morgan’s sensor design has been tested up to 100 bar pressure and 150°C which surpasses the current market requirements for heat metering.  This is a direct benefit of using alumina in the sensor design, a material which has minimal expansion properties, and is renowned for its strength and durability.

Due to its thermal stability, the sensor is also excellent for metering of potable water or other fluids. The inert nature of alumina makes a component that is suitable in food and pharmaceutical environments, as well as providing a long operational lifetime.

Morgan also has its own ceramic pressing and injection moulding capabilities, enabling complete vertical integration from start to finish of the housing and Lead Zirconate Titanate (PZT) elements of the sensor. These in house capabilities allow Morgan to provide a full design and development package.

Our new range of high temperature sensors has undergone extensive research and development to ensure that it is our strongest and most effective sensor for use in extreme temperature enviornments. Available as part of a standard range, or bespoke to order, it promises to reduce environmental factors during metering. Charlie Dowling, Morgan Advanced Materials

Related Posts

Resistors

Designing with High Voltage Resistors: 10 Top Tips for Success

29.3.2023
6
Inductors

API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

29.3.2023
5
Capacitors

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023
70

Upcoming Events

Mar 29
15:00 - 16:00 EEST

Supercapacitors vs. Batteries in Engine Starting

Mar 29
17:00 - 18:00 CEST

Practical LLC Transformer Design Methodology

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.