• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Move Aside Carbon: Boron Nitride-Reinforced Materials Are Even Stronger

28.12.2015

WT Microelectronics to Acquire Future Electronics

20.9.2023

Circuit Protection Components 2023 Market Analysis

20.9.2023

Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

19.9.2023

4th PCNS Awards Passive Component Papers

19.9.2023

Benefits of Ceramic Capacitors as Bootstrap Capacitors

19.9.2023

Vishay Boosts Power Inductor Manufacturing Capacity in Mexico

19.9.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    WT Microelectronics to Acquire Future Electronics

    Circuit Protection Components 2023 Market Analysis

    Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

    4th PCNS Awards Passive Component Papers

    Benefits of Ceramic Capacitors as Bootstrap Capacitors

    Vishay Boosts Power Inductor Manufacturing Capacity in Mexico

    SUMIDA to Build New Inductive Components Factory in Northern Vietnam

    Oscillators Integration, Selection Guide and Design In

    X-FAB Provides Foundry Service for Passive Device Integration

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    High frequency model of the physical inductor: The Cauer model

    High frequency model of the physical inductor: The basic lumped model

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    WT Microelectronics to Acquire Future Electronics

    Circuit Protection Components 2023 Market Analysis

    Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

    4th PCNS Awards Passive Component Papers

    Benefits of Ceramic Capacitors as Bootstrap Capacitors

    Vishay Boosts Power Inductor Manufacturing Capacity in Mexico

    SUMIDA to Build New Inductive Components Factory in Northern Vietnam

    Oscillators Integration, Selection Guide and Design In

    X-FAB Provides Foundry Service for Passive Device Integration

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    High frequency model of the physical inductor: The Cauer model

    High frequency model of the physical inductor: The basic lumped model

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Move Aside Carbon: Boron Nitride-Reinforced Materials Are Even Stronger

28.12.2015
Reading Time: 3 mins read
A A
0
VIEWS

source: ECN article

Tue, 12/22/2015 – 12:07pm by American Institute of Physics

RelatedPosts

WT Microelectronics to Acquire Future Electronics

Circuit Protection Components 2023 Market Analysis

Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

Carbon nanotubes are legendary in their strength—at least 30 times stronger than bullet-stopping Kevlar by some estimates. When mixed with lightweight polymers such as plastics and epoxy resins, the tiny tubes reinforce the material, like the rebar in a block of concrete, promising lightweight and strong materials for airplanes, spaceships, cars and even sports equipment.

While such carbon nanotube-polymer nanocomposites have attracted enormous interest from the materials research community, a group of scientists now has evidence that a different nanotube—made from boron nitride—could offer even more strength per unit of weight. They publish their results in the journal Applied Physics Letters.

Boron nitride, like carbon, can form single-atom-thick sheets that are rolled into cylinders to create nanotubes. By themselves boron nitride nanotubes are almost as strong as carbon nanotubes, but their real advantage in a composite material comes from the way they stick strongly to the polymer.

“The weakest link in these nanocomposites is the interface between the polymer and the nanotubes,” said Changhong Ke, an associate professor in the mechanical engineering department at the State University of New York at Binghamton. If you break a composite, the nanotubes left sticking out have clean surfaces, as opposed to having chunks of polymer still stuck to them. The clean break indicates that the connection between the tubes and the polymer fails, Ke noted.

Plucking Nanotubes

Ke and his colleagues devised a novel way to test the strength of the nanotube-polymer link. They sandwiched boron nitride nanotubes between two thin layers of polymer, with some of the nanotubes left sticking out. They selected only the tubes that were sticking straight out of the polymer, and then welded the nanotube to the tip of a tiny cantilever beam. The team applied a force on the beam and tugged increasingly harder on the nanotube until it was ripped free of the polymer.

The researchers found that the force required to pluck out a nanotube at first increased with the nanotube length, but then plateaued. The behavior is a sign that the connection between the nanotube and the polymer is failing through a crack that forms and then spreads, Ke said.

The researchers tested two forms of polymer: epoxy and poly(methyl methacrylate), or PMMA, which is the same material used for Plexiglas. They found that the epoxy-boron nitride nanotube interface was stronger than the PMMA-nanotube interface. They also found that both polymer-boron nitride nanotube binding strengths were higher than those reported for carbon nanotubes—35 percent higher for the PMMA interface and approximately 20 percent higher for the epoxy interface.

The Advantages of Boron Nitride Nanotubes

Boron nitride nanotubes likely bind more strongly to polymers because of the way the electrons are arranged in the molecules, Ke explained. In carbon nanotubes, all carbon atoms have equal charges in their nucleus, so the atoms share electrons equally. In boron nitride, the nitrogen atom has more protons than the boron atom, so it hogs more of the electrons in the bond. The unequal charge distribution leads to a stronger attraction between the boron nitride and the polymer molecules, as verified by molecular dynamics simulations performed by Ke’s colleagues in Dr. Xianqiao Wang’s group at the University of Georgia.

Boron nitride nanotubes also have additional advantages over carbon nanotubes, Ke said. They are more stable at high temperatures and they can better absorb neutron radiation, both advantageous properties in the extreme environment of outer space. In addition, boron nitride nanotubes are piezoelectric, which means they can generate an electric charge when stretched. This property means the material offers energy harvesting as well as sensing and actuation capabilities.

The main drawback to boron nitride nanotubes is the cost. Currently they sell for about $1,000 per gram, compared to the $10-20 per gram for carbon nanotubes, Ke said. He is optimistic that the price will come down, though, noting that carbon nanotubes were similarly expensive when they were first developed.

“I think boron nitride nanotubes are the future for making polymer composites for the aerospace industry,” he said.

featured picture: Researchers tested the force required to pluck a boron nitride nanotube (BNNT) from a polymer by welding a cantilever to the nanotube and pulling. The experimental set-up is shown in a schematic on the left and an actual image on the right. Credit: Changhong Ke/State University of New York at Binghamton

Related Posts

PCNS

4th PCNS Awards Passive Component Papers

19.9.2023
26
Market & Supply Chain

Vishay Boosts Power Inductor Manufacturing Capacity in Mexico

19.9.2023
14
Market & Supply Chain

SUMIDA to Build New Inductive Components Factory in Northern Vietnam

19.9.2023
13

Upcoming Events

Sep 26
September 26 @ 12:00 - September 28 @ 14:00 EDT

Microwave Packaging Technology

Sep 26
16:00 - 17:00 CEST

Connector Temperature Rise and Derating

Oct 3
October 3 @ 12:00 - October 5 @ 14:00 EDT

Design and Test of Non-Hermetic Microelectronic

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Inductors and RF Chokes Basics

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Coefficient of Linear Thermal Expansion on Polymers Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2023
2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.