• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Murata’s water repellant MLCC capacitor for car infotainment systems

11.10.2017

Würth Elektronik Announces Virtual Conference Digital WE Days 2023

22.9.2023

Circuit Protection Selection Guide 

22.9.2023

WT Microelectronics to Acquire Future Electronics

20.9.2023

Circuit Protection Components 2023 Market Analysis

20.9.2023

Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

19.9.2023

4th PCNS Awards Passive Component Papers

19.9.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Circuit Protection Selection Guide 

    WT Microelectronics to Acquire Future Electronics

    Circuit Protection Components 2023 Market Analysis

    Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

    4th PCNS Awards Passive Component Papers

    Benefits of Ceramic Capacitors as Bootstrap Capacitors

    Vishay Boosts Power Inductor Manufacturing Capacity in Mexico

    SUMIDA to Build New Inductive Components Factory in Northern Vietnam

    Oscillators Integration, Selection Guide and Design In

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    High frequency model of the physical inductor: The Cauer model

    High frequency model of the physical inductor: The basic lumped model

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Circuit Protection Selection Guide 

    WT Microelectronics to Acquire Future Electronics

    Circuit Protection Components 2023 Market Analysis

    Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

    4th PCNS Awards Passive Component Papers

    Benefits of Ceramic Capacitors as Bootstrap Capacitors

    Vishay Boosts Power Inductor Manufacturing Capacity in Mexico

    SUMIDA to Build New Inductive Components Factory in Northern Vietnam

    Oscillators Integration, Selection Guide and Design In

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    High frequency model of the physical inductor: The Cauer model

    High frequency model of the physical inductor: The basic lumped model

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Murata’s water repellant MLCC capacitor for car infotainment systems

11.10.2017
Reading Time: 3 mins read
A A
25
VIEWS

source: Murata news

Murata Manufacturing Co., Ltd. has introduced the GXT series of water repellent capacitors for automobile infotainment systems and comfort equipment. Designed with a water repellent layer on a multilayer ceramic capacitor, the product conforms to the AEC-Q200*1 electrical parts standard for automotive applications. This product is now in mass production.
Background
In conjunction with advances in size reduction and surface mount increased density in electronic equipment, there remains a possibility of generating a fault in circuit operation due to ion migration*2 in components by condensation in environments exposed to severe heat and humidity changes. For that reason, Murata has applied a water repellent layer to the surface of a multilayer ceramic capacitor that conforms to the AEC-Q200 automotive electronic components standards and thereby introduced a water repellent capacitor that can mitigate ion migration due to condensation.
Regarding water repellent capacitors, the company has offered the GXM series for general electronic equipment and the GGM series for automotive powertrain and safety applications, and is now adding the GXT series for automotive infotainment systems and comfort equipment.

RelatedPosts

Würth Elektronik Announces Virtual Conference Digital WE Days 2023

Circuit Protection Selection Guide 

WT Microelectronics to Acquire Future Electronics

Features
The structure of a water repellent capacitor is illustrated in Fig. 1. A water repellent layer has been applied to the surface of the capacitor. This water repellent condition of the capacitor maintains water droplets in a scattered state (Fig. 2), hindering growth of the condensed water drops that can connect the outside electrodes, and it thereby reduces the occurrence of ion migration. In addition, the water repellent film on the surface of the capacitor suppresses the elution of outside electrode metal to a water drop (ionization). In a wettability test using a water-soluble black marker (Fig. 4), the water repellent condition of a processed component is clearly superior to that of a component without the Murata Water repellent Layer. (Note: The goal of this Murata component is reduction of ion migration, not complete prevention of the effect.)

 

 Example of Structure_01
Fig. 1: Structural example of the water repellant capacitor
 Example of Structure_02 Example of Structure_03
Fig. 2: Water repellant condition maintains
droplets in a scattered state.
Fig. 3: Suppression of metal
elution to water drop
M+: Expresses state where a metal such as Sn or Cu has ionized.

Wettability test using a water-soluble black marker

Fig. 4: Wettability test using a water-soluble black marker
 (untreated components on left, water repellant processed components on right)

Applications
Examples: automotive infotainment systems, comfort equipment
(car navigation, audio equipment, etc.)

Electrical characteristics

Temperature characteristics X5R, X6S, X7R, X7S, C0G
Rated Voltage 4~100Vdc
Capacitance tolerances ±0.25pF, ±0.5pF, ±5%, ±10%, ±20%
Usage temperature range -55~85°C (X5R), -55~105°C (X6S), -55~125°C (X7R, X7S, C0G)

 

External size

External

LW size

0402 inch size: 1.0×0.5mm (T=0.5mm)
0603 inch size: 1.6×0.8mm (T=0.8mm)
0805 inch size: 2.0×1.25mm (T=1.25mm)
1206 inch size: 3.2×1.6mm (T=1.6mm)
1210 inch size: 3.2×2.5mm (T=2.0, 2.5mm)

 

Sample availability
Murata is accepting Web-based requests for free-of-charge samples for the following part numbers. Murata welcomes these sample requests.

Related Posts

Capacitors

Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

19.9.2023
43
PCNS

4th PCNS Awards Passive Component Papers

19.9.2023
52
Capacitors

Benefits of Ceramic Capacitors as Bootstrap Capacitors

19.9.2023
44

Upcoming Events

Sep 26
September 26 @ 12:00 - September 28 @ 14:00 EDT

Microwave Packaging Technology

Sep 26
16:00 - 17:00 CEST

Connector Temperature Rise and Derating

Oct 3
October 3 @ 12:00 - October 5 @ 14:00 EDT

Design and Test of Non-Hermetic Microelectronic

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Non-Linear Resistors: Thermistors, Varistors, Memristors

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2023
2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.