• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

New Whiskers Phenomena?

26.10.2020

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023

Flying Capacitors Explained

17.3.2023

TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

16.3.2023

ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

16.3.2023

Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

15.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    TAIYO YUDEN Releases 150C Automotive Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    TAIYO YUDEN Releases 150C Automotive Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

New Whiskers Phenomena?

26.10.2020
Reading Time: 8 mins read
0 0
0
SHARES
712
VIEWS

Source: EPCI e-Symposium PCNS paper

by Jean Pascal Michelet and Jean Edmond Le Calvé
VALEO Créteil, France

RelatedPosts

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

Flying Capacitors Explained

submitted to the 2nd PCNS 10-13th September 2019, Bucharest, Romania as paper 4.4.

Introduction

Some PCBAs were submitted to a whisker test +85°C 85% RH for 200h duration and additional 2h from +85°C/85% RH-T° +25°C/50% RH 5 Cycles. The functional test pass and boards were sent to an external lab for visual inspection. Inspection failed because of Tin whiskers detected on MLCCs terminations.

As reminder a whisker is a spontaneous columnar or cylindrical filament, usually of monocrystalline metal, emanating from the surface of a finish. In automotive electronic the most common are Tin Whiskers growing on Tin platted Copper surfaces. Our suppliers delivering components with Tin or Tin alloy finishes, if no whiskers mitigation method is used or efficiency demonstrated, should perform whisker tests according to JESD-201 standard / 22A121 method [1] [2].

As many Multi-Layer-Ceramic-Capacitors (MLCCs) got whiskers, we returned to the Bill of Material (BOM) and traceability to find out exactly the part numbers. We went back to their qualifying and the results were good. We also checked the Process Change Notification (PCN) history to see if the suppliers submitted any PCN relative to the termination scheme and we did not find any on this topic. Moreover, all the impacted MLCCs got a Nickel barrier between Copper electrode and Nickel platting supposed to avoid or limit the Tin whiskers growth.

Observations

Fig 1: Observations of the whiskers

Observations of the whiskers: Lengths are measured up to 225μm. Whiskers have tubular shapes. They are located on the sides only, never on the top (not possible to observe the bottom). Whiskers are located between the Tin platted termination and the flux rise.

The shape of these whiskers is not conventional and is not described neither by the NASA [3] nor by JEDEC [2]. Some hollow whiskers were reported [4], [5], We did not find any document on Tubular whiskers growth on Electronic components. For us it is the first observation of such structure.

 

Fig2: EDX analysis evidenced Tin, Bromide, Barium and Oxygen. Barium is coming for the BaTiO3 ceramic from X7R
MLCC. Bromide origin is unknown

 

Fig3: The shape of “standard” Whiskers was observed on another component terminal and compared with those found
on the MLCCs

 

Fig4: The whiskers in question are hollow like micro-tubes. They are transparent and very brittle

 

Fig5: The micro-tubes are like bamboo canes with a succession of segments. Some have their end slit on the side

Root Cause Analysis

A cross section was done in the horizontal plane of a MLCC at the maximum flux rise where the Whiskers grow.

 

Fig6: The extremity of the termination evidenced Tin over Nickel and Copper. Tin is partially oxidized (grey color) like
whiskers. In the section plan the tubular shape is evidenced. Whiskers growth is on the ceramic nearby or in contact
with the Tin edge of Tin layer

 

Fig7: The edge of the Tin layer is oxidized by Bromide. The crack between the ceramic and the termination is a minor
polishing artefact. Bromide origin was identified as coming from the Solder Flux

Risk Analysis

The major risk of metallic whisker is to reduce the insulation distance or worst to make a short circuit. In our case the whiskers is made of Tin, Oxygen and Bromide. The visual observation evidenced transparent tubular structure, so it is not a pure metal, but a compound of Tin oxide + Bromide.

Tin oxide is classified as wide band gap (3.6 eV) N-type semiconductor. Considering the risk to have a conductive path, we make electrical verification. We did several attempts to contact the Whiskers by probing but it failed because of whiskers are too brittle. We used a cross section through both MLCC termination solder and some whiskers ends to be contacted with Silver epoxy ink.

 

Fig8: cross section in the vertical plan contacting the MLCC solder and the whiskers ends. Both were contacted with silver epoxy. The realization of the micro-section as much as the precise deposit of the silver lacquer are difficult to achieve.

 

Fig9: Verification of the contact, and measure 2 probes. The whiskers are not conductive (or not contacted). A verification was done by contacting both ends of a single whiskers.

 

Fig10: Verification of the whiskers resistance done by contacting both ends of a single whiskers: not conductive

Tin tubes growth hypothesis

While lowering the reflow temperature profile, more hollow whiskers were possible to be generated. This suggests that the SnO hollow whiskers growth mechanism is promoted by some still active flux residues not fully desactivated by the reflow process. Among these residues the weak organic acids (WOA) and halogen/bromine are suspected to contribute to the growth mechanism of SnO whisker.

Tin hydroxide chloride [Sn3O2(OH)2-xClx] was reported to be intermediate corrosion products on reaction from Sn to SnO/SnO2 (depending on pH and presence of chlorine halogen) [7]. A similar Tin hydroxide bromide could have been the intermediate corrosion product to give rise to the tin oxide hollow whisker encountered:

 

Fig11: corrosion of Tin layer with intermediate Tin hydroxide halogen [7]

This localized corrosion process in presence of halogen ion (bromine) could have been at the origin of the tube shape observed. The transformation of Tin nanowires to amorphous oxide nanotubes has been described by HoSun Shin [8] based on a localized corrosion process in an aqueous solution involving hydrochloric acids (from halogen chlorine ion). The nano-tubes were formed by the dissolution of the tin atoms in the core of the “nanowire” while the tin oxide shell was remaining.

Conclusion

Hollow Tin Wiskers are transparent, very brittle and not conductive.

We demonstrated no risk of leakage or short circuit. At visual inspection they can be considered as cosmetic.

Growth mechanism is supected to come from a localized corrosion process by a Bromine acidic solution from the Solder flux residues and the moisture from the humid atmosphere of the damp heat test.

References

1) JEDEC STANDARD JESD22-A121A “Test Method for Measuring Whisker Growth on Tin and Tin Alloy Surface Finishes”, July 2008.
2) JEDEC STANDARD JESD201A “Environmental Acceptance Requirements for Tin Whisker Susceptibility of Tin and Tin Alloy Surface Finishes”, Sept. 2008.
3) Jay A. Brusse, Gary J. Ewell, and Jocelyn P. Siplon, “Tin Whiskers: Attributes and Mitigation”, CARTS 2002: 22nd Capacitor and Resistor Technology Symposium, 25-29 March 2002
4) H. Kehrer and H. Kadereit, “Tracer Experiments on the Growth of Tin Whiskers,” Applied Physics Letters, 16, no. 11, pp. 411-412, June 1, 1970.
5) Jing Cheng, Paul T. Vianco, and James C.M. Li, “Hollow tin/chromium whiskers”, Applied Physics Letters, 96, 184102, 2010.
6) David Hillman, “False tin-whiskers – beware of masquerading tin-copper intermetallics”, ITRI, 2012
7) Pierre Eckold, “Corrosion of Tin and its Influence on Whisker Growth”, 7th IPC–CALCE International ymposium on Tin Whiskers, November 12-13, 2013.
8) Ho SunShin, Seong GiJeon, JinYu, Jae YongSong, “Transformation of Sn nanowires to oxide nanotubes by a localized corrosion process”, Materials Letters Volume 82, 1 September 2012.

Acknowledgements

Special Thanks to José Gomes from ILED. Investigation Laboratory for Electronic Devices Site Montesquieu 8 Allée Isaac Newton 33650 Martillac-France


 

 

more 2nd PCNS symposium technical papers can be viewed and downloaded in pdf from EPCI Academy e-Proceedings:

Related Posts

Capacitors

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023
6
Market & Supply Chain

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
9
Capacitors

Flying Capacitors Explained

17.3.2023
25

Upcoming Events

Mar 21
March 19 - March 23

APEC 2023

Mar 22
14:00 - 15:00 CET

Parasitic Components in Power Converters – Fundamentals and Measurements Rohde & Schwarz Webinar

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.