Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Isabellenhütte Releases Automotive Pulse Load Resistors

    Molex Introduces Modular Wire-to-Wire Automotive Connectors

    Vishay Releases Automotive Glass Protected 0402 NTC Thermistor

    Current Sense Transformer and its Calculation

    Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

    TDK Unveils Small Automotive Power Inductors

    YAGEO Launches Hybrid Polymer Radial Capacitor for High-Reliability Automotive and Power Applications

    YAGEO Achieved a Record Revenue in November on Strong AI Demand

    Industry Smallest Dual-Pole Reed Relay Wins Elektra Awards 2025

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Isabellenhütte Releases Automotive Pulse Load Resistors

    Molex Introduces Modular Wire-to-Wire Automotive Connectors

    Vishay Releases Automotive Glass Protected 0402 NTC Thermistor

    Current Sense Transformer and its Calculation

    Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

    TDK Unveils Small Automotive Power Inductors

    YAGEO Launches Hybrid Polymer Radial Capacitor for High-Reliability Automotive and Power Applications

    YAGEO Achieved a Record Revenue in November on Strong AI Demand

    Industry Smallest Dual-Pole Reed Relay Wins Elektra Awards 2025

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
Reading Time: 3 mins read
A A

Professor Sam Ben-Yaakov’s in this video provides insight into the complexities and challenges associated with measuring non-linear class II ceramic capacitors.

Measurement Techniques for Nonlinear Capacitors

RelatedPosts

Capacitor Self-balancing in a Flying-Capacitor Buck Converter

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

Efficient Power Converters: Duty Cycle vs Conduction Losses

This presentation delves into the intricacies of measuring nonlinear capacitors, focusing on ceramic capacitors, particularly Class II ferroelectric types such as X7R and X5R. The discussion highlights the variability in measurement results due to differing methodologies and the significance of understanding these methods to accurately interpret data.

1. Introduction:

Nonlinear capacitors exhibit capacitance changes based on applied voltages due to the voltage-dependent dielectric constant. Understanding these variations is crucial, especially when comparing data across different sources. This article outlines various measurement techniques, emphasizing the importance of method-specific data interpretation.

2. Understanding Capacitance:

Capacitance (C) is defined as the ratio between electric charge (Q) and voltage (V), expressed as C = Q/V. While linear capacitors maintain a consistent relationship, nonlinear capacitors’ capacitance varies with voltage owing to fluctuations in the dielectric constant.

3. Types of Capacitance in Nonlinear Capacitors:

  • Differential (Small Signal) Capacitance (CD): The slope of the Q-V curve at a specific operating point, sensitive to voltage changes.
  • Total Capacitance: Defined as the ratio of total charge to total voltage, varying with applied voltage.
  • AC (Large Signal) Capacitance: Measured under a specific DC bias with varying AC amplitudes, reflecting large signal behavior.
  • ref link: High CV MLCC DC BIAS and AGEING Capacitance Loss Explained

4. Measurement Techniques:

4.1 Impedance-Based Methods:

  • RMS Measurements: Capture the root mean square of the entire signal, including harmonics.
  • First Harmonic Analysis: Focuses on the fundamental frequency, commonly used in network and impedance analyzers.
  • Peak-to-Peak Measurements: Utilizes oscilloscopes to measure voltage and current peaks, effective for small, undistorted signals.

4.2 Charge-Voltage (Q/V) Methods:

  • Involves charging/discharging through RC circuits, analyzing time constants to determine capacitance.

5. Impact of Measurement Methodologies:

Different measurement approaches yield varying results due to:

  • Signal distortion in nonlinear capacitors, especially at high excitation levels.
  • Phase shifts introduced by Equivalent Series Resistance (ESR) and Equivalent Series Inductance (ESL).
  • Variations in DC bias and AC excitation amplitudes.

6. Simulation Analysis:

Utilizing LTSpice simulations, models incorporating differential capacitance (CD) and voltage dependencies reveal discrepancies across measurement methods. Simulations underscore how small signal conditions minimize differences, while large signals amplify them.

7. Conclusion:

Accurate characterization of nonlinear capacitors necessitates:

  • Clear documentation of measurement conditions (DC bias, AC excitation, measurement technique).
  • Caution when comparing data from different methodologies.
  • Recognition that discrepancies do not imply errors but reflect methodological differences.

    Related

    Source: Sam Ben-Yaakov

    Recent Posts

    Current Sense Transformer and its Calculation

    10.12.2025
    15

    Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

    10.12.2025
    13

    YAGEO Launches Hybrid Polymer Radial Capacitor for High-Reliability Automotive and Power Applications

    10.12.2025
    12

    Digital Twin of a Tantalum Capacitor Anode: From Powder to Formation

    8.12.2025
    33

    November 2025 Interconnect, Passives and Electromechanical Components Market Insights

    4.12.2025
    68

    Skeleton Opens €220M Supercapacitor Leipzig Factory

    3.12.2025
    22

    TAIYO YUDEN Extends Polymer Hybrid Aluminum Capacitors with Higher Ripple Current and Lower Profile

    3.12.2025
    28

    Würth Elektronik Extends its Safety Film Capacitors

    3.12.2025
    29

    Researchers Present Novel Graphene-Based Material for Supercapacitors

    3.12.2025
    19

    Upcoming Events

    Dec 9
    December 9 @ 12:00 - December 11 @ 14:15 EST

    Space and Military Standards for Hybrids and RF Microwave Modules

    Dec 15
    December 15 @ 13:00 - December 18 @ 15:15 EST

    Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

    Dec 16
    17:00 - 18:00 CET

    Coaxial Connectors and How to Connect with the PCB

    View Calendar

    Popular Posts

    • Buck Converter Design and Calculation

      0 shares
      Share 0 Tweet 0
    • Boost Converter Design and Calculation

      0 shares
      Share 0 Tweet 0
    • Flyback Converter Design and Calculation

      0 shares
      Share 0 Tweet 0
    • LLC Resonant Converter Design and Calculation

      0 shares
      Share 0 Tweet 0
    • Dual Active Bridge (DAB) Topology

      0 shares
      Share 0 Tweet 0
    • What Electronics Engineer Needs to Know About Passive Low Pass Filters

      0 shares
      Share 0 Tweet 0
    • MLCC and Ceramic Capacitors

      0 shares
      Share 0 Tweet 0
    • Ripple Current and its Effects on the Performance of Capacitors

      3 shares
      Share 3 Tweet 0
    • What is a Dielectric Constant and DF of Plastic Materials?

      4 shares
      Share 4 Tweet 0
    • SEPIC Converter Design and Calculation

      0 shares
      Share 0 Tweet 0

    Newsletter Subscription

     

    Passive Components Blog

    © EPCI - Leading Passive Components Educational and Information Site

    • Home
    • Privacy Policy
    • EPCI Membership & Advertisement
    • About

    No Result
    View All Result
    • Home
    • Knowledge Blog
    • PCNS

    © EPCI - Leading Passive Components Educational and Information Site

    This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
    Go to mobile version