Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    High-Frequency Ceramic Capacitor Performance of Novel Embedded Electrode Design

    Different Causes of Capacitor Degradation and Failure Mechanisms

    New Construction For Highest Voltage Aluminium Polymer Capacitor

    Bourns Releases Automotive 150C SMD Power Inductors with High Saturation Current

    Discrete Components Selection Optimization with Modelithics and Keysight ADS

    Modelithics Introducing NEW Modelithics Library for MATLAB

    Bourns Unveils New Robust Wide-Terminal Thick Film Resistors

    Coilcraft Introduces LLC Half-Bridge Transformers for High-Frequency Applications

    Littelfuse Launches Industry-First 1000V Automotive Fuses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    High-Frequency Ceramic Capacitor Performance of Novel Embedded Electrode Design

    Different Causes of Capacitor Degradation and Failure Mechanisms

    New Construction For Highest Voltage Aluminium Polymer Capacitor

    Bourns Releases Automotive 150C SMD Power Inductors with High Saturation Current

    Discrete Components Selection Optimization with Modelithics and Keysight ADS

    Modelithics Introducing NEW Modelithics Library for MATLAB

    Bourns Unveils New Robust Wide-Terminal Thick Film Resistors

    Coilcraft Introduces LLC Half-Bridge Transformers for High-Frequency Applications

    Littelfuse Launches Industry-First 1000V Automotive Fuses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
Reading Time: 3 mins read
A A

Professor Sam Ben-Yaakov’s in this video provides insight into the complexities and challenges associated with measuring non-linear class II ceramic capacitors.

Measurement Techniques for Nonlinear Capacitors

RelatedPosts

Ripple Steering in Coupled Inductors: SEPIC Case

Coupled Inductors in SEPIC versus Flyback Converters

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

This presentation delves into the intricacies of measuring nonlinear capacitors, focusing on ceramic capacitors, particularly Class II ferroelectric types such as X7R and X5R. The discussion highlights the variability in measurement results due to differing methodologies and the significance of understanding these methods to accurately interpret data.

1. Introduction:

Nonlinear capacitors exhibit capacitance changes based on applied voltages due to the voltage-dependent dielectric constant. Understanding these variations is crucial, especially when comparing data across different sources. This article outlines various measurement techniques, emphasizing the importance of method-specific data interpretation.

2. Understanding Capacitance:

Capacitance (C) is defined as the ratio between electric charge (Q) and voltage (V), expressed as C = Q/V. While linear capacitors maintain a consistent relationship, nonlinear capacitors’ capacitance varies with voltage owing to fluctuations in the dielectric constant.

3. Types of Capacitance in Nonlinear Capacitors:

  • Differential (Small Signal) Capacitance (CD): The slope of the Q-V curve at a specific operating point, sensitive to voltage changes.
  • Total Capacitance: Defined as the ratio of total charge to total voltage, varying with applied voltage.
  • AC (Large Signal) Capacitance: Measured under a specific DC bias with varying AC amplitudes, reflecting large signal behavior.
  • ref link: High CV MLCC DC BIAS and AGEING Capacitance Loss Explained

4. Measurement Techniques:

4.1 Impedance-Based Methods:

  • RMS Measurements: Capture the root mean square of the entire signal, including harmonics.
  • First Harmonic Analysis: Focuses on the fundamental frequency, commonly used in network and impedance analyzers.
  • Peak-to-Peak Measurements: Utilizes oscilloscopes to measure voltage and current peaks, effective for small, undistorted signals.

4.2 Charge-Voltage (Q/V) Methods:

  • Involves charging/discharging through RC circuits, analyzing time constants to determine capacitance.

5. Impact of Measurement Methodologies:

Different measurement approaches yield varying results due to:

  • Signal distortion in nonlinear capacitors, especially at high excitation levels.
  • Phase shifts introduced by Equivalent Series Resistance (ESR) and Equivalent Series Inductance (ESL).
  • Variations in DC bias and AC excitation amplitudes.

6. Simulation Analysis:

Utilizing LTSpice simulations, models incorporating differential capacitance (CD) and voltage dependencies reveal discrepancies across measurement methods. Simulations underscore how small signal conditions minimize differences, while large signals amplify them.

7. Conclusion:

Accurate characterization of nonlinear capacitors necessitates:

  • Clear documentation of measurement conditions (DC bias, AC excitation, measurement technique).
  • Caution when comparing data from different methodologies.
  • Recognition that discrepancies do not imply errors but reflect methodological differences.

    Related

    Source: Sam Ben-Yaakov

    Recent Posts

    High-Frequency Ceramic Capacitor Performance of Novel Embedded Electrode Design

    22.9.2025
    7

    Different Causes of Capacitor Degradation and Failure Mechanisms

    22.9.2025
    8

    New Construction For Highest Voltage Aluminium Polymer Capacitor

    22.9.2025
    9

    Discrete Components Selection Optimization with Modelithics and Keysight ADS

    22.9.2025
    5

    Modelithics Introducing NEW Modelithics Library for MATLAB

    19.9.2025
    5

    TDK Releases Industry-Leading 22nF 1000V C0G MLCCs in the 3225 Case

    19.9.2025
    9

    Modelithics Releases COMPLETE Library v25.6 for Keysight ADS with 14 New Scalable Models

    18.9.2025
    5

    Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

    18.9.2025
    11

    Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

    18.9.2025
    25

    Panasonic Industry Releases Highest Capacitance 63V Conductive Polymer Tantalum Capacitors in 3mm Height

    18.9.2025
    27

    Upcoming Events

    Sep 22
    September 22 @ 13:00 - September 25 @ 15:15 EDT

    Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

    Sep 30
    September 30 @ 12:00 - October 2 @ 14:00 EDT

    MIL-Std-883 TM 2010

    Oct 17
    12:00 - 14:00 EDT

    External Visual Inspection per MIL-STD-883 TM 2009

    Oct 20
    October 20 - October 23

    Digital WE Days 2025 – Virtual Conference

    Oct 21
    October 21 @ 12:00 - October 23 @ 14:15 EDT

    Space and Military Standards for Hybrids and RF Microwave Modules

    View Calendar

    Popular Posts

    • Buck Converter Design and Calculation

      0 shares
      Share 0 Tweet 0
    • Boost Converter Design and Calculation

      0 shares
      Share 0 Tweet 0
    • Flyback Converter Design and Calculation

      0 shares
      Share 0 Tweet 0
    • LLC Resonant Converter Design and Calculation

      0 shares
      Share 0 Tweet 0
    • Dual Active Bridge (DAB) Topology Explained

      0 shares
      Share 0 Tweet 0
    • What is a Dielectric Constant and DF of Plastic Materials?

      4 shares
      Share 4 Tweet 0
    • Ripple Current and its Effects on the Performance of Capacitors

      3 shares
      Share 3 Tweet 0
    • SEPIC Converter Design and Calculation

      0 shares
      Share 0 Tweet 0
    • How to Design an Inductor

      0 shares
      Share 0 Tweet 0
    • Flying Capacitors Explained

      0 shares
      Share 0 Tweet 0

    Newsletter Subscription

     

    Passive Components Blog

    © EPCI - Leading Passive Components Educational and Information Site

    • Home
    • Privacy Policy
    • EPCI Membership & Advertisement
    • About

    No Result
    View All Result
    • Home
    • Knowledge Blog
    • Premium Suppliers

    © EPCI - Leading Passive Components Educational and Information Site

    This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
    Go to mobile version