• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Novel Nanotechnology For The Practical Application Of Aqueous Sodium Ion Capacitors

19.7.2018

Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

29.3.2023

Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

29.3.2023

Designing with High Voltage Resistors: 10 Top Tips for Success

29.3.2023

API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

29.3.2023

KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

28.3.2023

Optimization of 500W LLC Transformer – Case Study

28.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

    Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Designing with High Voltage Resistors: 10 Top Tips for Success

    API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

    KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

    Optimization of 500W LLC Transformer – Case Study

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

    Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Designing with High Voltage Resistors: 10 Top Tips for Success

    API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

    KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

    Optimization of 500W LLC Transformer – Case Study

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Novel Nanotechnology For The Practical Application Of Aqueous Sodium Ion Capacitors

19.7.2018
Reading Time: 3 mins read
0 0
0
SHARES
85
VIEWS

Source: Science Trends news

by Qi Yang & Chunyi Zhi

RelatedPosts

Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

Designing with High Voltage Resistors: 10 Top Tips for Success

In the age of post-lithium-ion batteries featuring dilemmas including rising demands, a sharp decline in lithium reserves, and severe safety issues, aqueous energy storage systems (AESSs) demonstrate their advantages due to their low cost and excellent safety performance in nature.

By replacing organic solvents adopted by common lithium-ion batteries (LIBs) with aqueous electrolytes, AESSs, such as sodium ion capacitors, exhibit eco-friendly traits and inherent safety, which fits modern society’s theme of “green and sustainable.” Furthermore, the low-cost superiority also helps aqueous sodium ion capacitor to transform intermittent renewable energy sources such as wind and solar energy into continuous electricity in the power grid.

However, the practical application of aqueous sodium ion capacitor still suffers from technical problems like the shortage of high-performance electrode materials. NaTi2(PO4)3, a kind of Na super ion conductor, possesses suitable working potential and low solubleness and is promising for adoption in aqueous sodium ion capacitors. Nevertheless, conventional NaTi2(PO4)3 with irregular morphology and large size only exhibits a low capacity and short lifespan. This is mainly due to the outdated synthesis process, which hinders releasing the full potential of NaTi2(PO4)3 in AESSs.

To tackle this problem, for the first time, we present a novel nanotechnology based on the liquid transformation method to synthesize porous single-crystal NaTi2(PO4)3. Different from the traditional solid-state reaction route established onto the high-temperature annealing process, our method mildly fabricates NaTi2(PO4)3 in a low-temperature liquid environment. It is this superior reaction situation that generates a high-quality NaTi2(PO4)3 with regular morphology, small particles, porous nanostructure, and single-crystal properties. Furthermore, this nanotechnology was successfully extended to two other different raw materials to synthesize NaTi2(PO4)3, demonstrating its universality as a general methodology and will absolutely receive intensive attraction.

Motivated by this advance in nanoscale synthesis process and the generated properties, this high-quality NaTi2(PO4)3 is supposed to exhibit desirable performance. As the negative material for aqueous sodium ion capacitor, NaTi2(PO4)3 electrode demonstrates an outstanding rate capability of 80-102 mA h g-1 at varied current densities of 0.5-3 A g-1, remaining 80% capacity even at sixfold charge rate (fully charged in less than two minutes). This fast-charge performance, which has never been reported in common mobile phones and electric vehicles, will undisputedly be admired by consumers.

Compared with traditional LIBs, one advantage of aqueous sodium ion capacitors is their application in flexible electronic devices which can benefit from the inherent safety of aqueous electrolytes. Thus, a flexible aqueous sodium ion capacitor was assembled by coupling the NaTi2(PO4)3 electrode with a porous carbon electrode. Surprisingly, this flexible device could steady ambient work without any protection measures like encapsulation adopted by traditional LIBs, which lowers the cost to a great extent and makes this device desirable to most people. Furthermore, the performance of this device is rarely effected at a continuous bending state from 0 to 180 o, demonstrating its excellent flexibility, vital in wearable electronics.

In conclusion, dilemmas that arise in the age of post-lithium-ion batteries force us to seek promising energy storage technologies to deal with the energy issue, which gives AESSs the golden opportunity to rapidly develop. Besides, the highly developed nanotechnology can also help aqueous sodium ion capacitors tackle their technical challenges. Therefore, it is likely that aqueous sodium ion capacitors will play a significant role in our daily lives in the near future.

These findings are described in the article entitled Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor, recently published in the journal Nano Energy.

This work was conducted by Qi Yang, Zijie Tang, Zhuoxin Liu, Hongfei Li, and Chunyi Zhi from the City University of Hong Kong, Sihan Cui, Yifei Ge, and Jianbo Liang from Capital Normal University, and Na Li and Haiyan Zhang from the Guangdong University of Technology.

 

Related Posts

Capacitors

Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

29.3.2023
250
Aerospace & Defence

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023
56
Market & Supply Chain

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

23.3.2023
91

Upcoming Events

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

Apr 5
11:00 - 12:00 CEST

Plugging – Filling – Tenting; WE PCB Webinar

Apr 6
April 6 @ 12:00 - April 7 @ 14:00 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.