• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Passives Components Selection Guide for Space-Grade Switching Regulators

24.8.2022

Flex Suppressor Explained and its Applications

24.3.2023

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

23.3.2023

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Passives Components Selection Guide for Space-Grade Switching Regulators

24.8.2022
Reading Time: 10 mins read
0 0
0
SHARES
247
VIEWS

With the increasing use of low-voltage, high-current loads such as FPGAs within spacecraft avionics, engineers are increasingly having to design-in switching-mode regulators to generate supply rails. Selection of passive electronic components is one of the key item for reliable operation. Dr. Rajan Bedi, CEO and founder of Spacechips, discuss its selection guide in article published by EDN.

Most of the qualified parts have integrated the switching and low-side FETs, but require an external inductor as well as input and output capacitors. The choice of these passives is very important as they determine the quality of the conversion, i.e. input and output ripple, load regulation, and response to single-event effects (SEEs).

RelatedPosts

Flex Suppressor Explained and its Applications

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

Power supply design is by its very nature full of trade-offs and compromises such as cost, size, performance, and reliability. However, there is also scope to optimise and reduce the dimensions and mass of the energy-storing passives.

Switching DC-DCs regulate the output voltage based on energy flow into and from the DC-DC by controlling the duty cycle of the on and off states. When the switch is conducting, energy flows from the input source into the convertor and in the case of a buck, some of this gets stored in the inductor as magnetic energy (0.5*LI2) while some gets delivered directly to the output (forward topology). Similarly, during the off interval, energy is delivered from the convertor to the load. For a buck, this comes from the inductor, where it was previously stored when the FET was on.

The energy added to the inductor during the on-time is always equal to that delivered to the load when the switch is off, i.e. the inductor ends each cycle with exactly the same current and energy it started with; the definition of steady state!

Figure 1 This diagram shows the switching cycle of a buck regulator.

As an example, assuming a switching frequency of 500 kHz, an input of +5.5V, a load voltage of +0.95V, a load current of 18 A, and a conversion efficiency of 90%, the resulting input and output powers are 19 and 17.1 W respectively. The source energy drawn during each switching cycle is 38 µJ and the energy output when the FET is off is 34.2 µJ. At a frequency of 500 kHz, the total energy processed by the regulator is 17.1 J/s, or 17.1 W by definition.

When we add energy to an inductor, the current through it ramps up linearly. When we remove the energy, current ramps down, resulting in an observed ac current ripple. In an analogous manner, when we add energy to a capacitor, the voltage across it ramps up linearly. When we remove the energy, voltage ramps down, resulting in an observed ac voltage ripple. The switching action continuously adds and removes energy, producing current ripple through the inductor and voltage ripple across capacitors. For both, there are guidelines for the maximum amount of tolerable ac variation relative to its dc level.

For a buck regulator, the inductor stores the input energy in its magnetic field when the switching FET is on and delivers this to the load when the high-side transistor is off. The choice of the value of inductance is based on the level of current ripple to be delivered to the load, defined by a geometrical ratio, r:

where Iload is the average inductor current, ΔIload is the current swing, Iac and Idc are the ac and dc values of the inductor current respectively. The resulting inductance in Henrys related to r can be calculated from:

where fsw is the switching frequency in Hertz.

For example, to generate a +0.95V rail at 18 A, the following table lists the absolute peak-to-peak inductor current ripple in amps and as a percentage of Iload, as well as the resulting inductance as a function of r:

Table 1 Calculation of inductor ripple and inductance

The value of the inductance is inversely proportional to load current and switching frequency while its physical size and mass are proportional to Iload.

A fully-integrated, space-grade buck regulator offers an overall smaller form factor and is easier to design-in, while having to add an external magnetic and passives gives the designer more control over the level of current ripple, and hence the voltage variation passed to the load.

Figure 2 Compare fully-integrated vs. non-integrated space-grade switching regulators.

A large inductance produces less current ripple, resulting in lower voltage fluctuation in the load. A larger inductance, because of its natural tendency to oppose a change in current, slows the transient response of the regulator and increases power loss due to a bigger intrinsic dc resistance. A smaller inductance improves the speed of regulation but increases the amount of output ripple and risks the inductor being driven into saturation. It is important that the inductors’ rms current and saturation current ratings are not exceeded, with the latter greater than the calculated peak value. The physical size of the magnetic must match its energy-handling capability and a bigger core is required to handle higher powers. Please also check the tolerance of the inductance, which can vary by up to 30% for some suppliers, resulting in higher than desired ripple current.

The inductor current ripple appears as a variation in the output voltage and one of the functions of the output capacitance is to reduce the amount of ripple seen by the load. Capacitor ESR and ESL are important parameters that determine the output voltage ripple associated with the inductor current.

A capacitor naturally resists changes in ac. voltage and once it is charged, has a tendency to maintain the voltage, especially if there is ripple riding on top of the dc. The capacitor, if appropriately sized, will be too slow to keep up with voltage fluctuations due to ripple, so they get filtered out.

When the FET is off, the input is disconnected from the output, however, the load will always require a continuous flow of energy. During this time, the output capacitance must also store sufficient charge to provide the load an output: when the switch is off, the inductor current decreases while supplying the load and the output capacitance buffers this current variation so the load sees a nearly constant voltage.

The output capacitance also determines how the regulator responds to a large change in load current. It must be sized appropriately to supply the load while the DC-DC cannot and until the latter’s feedback control loop is able to respond. The following equation specifies the minimum output capacitance necessary to accomplish this:

while the following equation calculates the minimum output capacitance to meet the target output voltage ripple requirement:

The LC filter formed by the inductor and output capacitance removes the ac component of the switching waveform to output an average (dc) voltage. For a buck regulator, the output capacitance is repeatedly charged and discharged by the ripple centred on the load voltage. Trace Ico in Figure 1 plots the continuous current flowing into the output capacitance.

Typically a variety of different capacitors are used in parallel to minimise the equivalent series resistance (ESR) and equivalent series inductance (ESL) contributions to output ripple as well as current sharing to ensure reliable operation. Parts are chosen based on their rated ripple current, working voltage, and parasitics.

Figure 3 plots the ripple-voltage contributions generated by ESR, ESL, and capacitance. The ESR contribution is resistance * current, the capacitance component is the integral of current and time, producing triangular waves, and the ESL component can be expressed as a derivative, with an instantaneous spike occurring at each switching instant producing high-frequency, pulse-like noise. The total voltage fluctuation across the capacitor comprises a composite sum of these three components:

The peak-to-peak voltage ripple seen at output is inversely proportional to capacitance and switching frequency, but proportional to load current, ESR, and ESL.

Figure 3 This operation analysis shows the impact of ESR, ESL, and capacitance on ripple voltage.

Figure 4 compares the ripple voltage measured from tantalum and multi-layer ceramic capacitors (MLCCs). MLCCs have lower intrinsic ESR and increasing the amount of capacitance reduces ripple further.

Figure 4 These graphs show the impact of capacitor type and capacitance on ripple voltage.

Input capacitance reduces the source ripple voltage seen at the switch of the DC-DC to a level that can be handled by the bulk capacitors without impacting the latter’s ESR dissipation. For a buck regulator, the ac part of its input current is supplied by the capacitance when the FET is on and conducting. When the high-side switch is off, the input capacitance recharges and trace Ic(IN) in Figure 1 plots its discontinuous, trapezoidal waveform with high di/dt and peak-to-peak amplitude. The source is not able to generate such a rapidly-changing pulsating current.

Bulk input capacitance is used to minimise source voltage deviations to ensure a stable output during load transients. The higher the capacitance, the lower the perturbation, which is directly proportional to changes in load current.

A good starting place to determine the amount of input capacitance is to specify the target level of peak-to-peak voltage ripple, which is inversely proportional to capacitance and switching frequency, but proportional to load current and ESR:

For a buck regulator, the input capacitor’s rms current is much higher than that in the output capacitor and the former is determined by its stress requirements, whereas on the output, it is simply the maximum allowed load ripple that determines the amount of capacitance. The largest, permissible rms current for a capacitor can be calculated from its maximum power consumption, derived from its case size, ESR, and the tolerable temperature rise.

Typically, a variety of different capacitors are used in parallel to minimise the ESR and ESL contributions to the input ripple as well as current sharing to ensure reliable operation. Parts are chosen based on their rated ripple current, working voltage, self-heating, ESR and ESL, with multi-layer ceramics used because of their low parasitics. The observed ripple, therefore, is almost entirely due to the actual capacitance and attention must be paid to thermal and dc bias effects on the value of capacitors. Dielectrics, which are less sensitive to temperature, are typically used to minimise changes in capacitance. The higher the temperature, the lower the reliability, including lifetime.

There are many trade-offs when designing a buck regulator: a higher switching frequency reduces the level of ripple voltage in the input and output capacitors as well as decreasing the amount of capacitance required by the DC-DC. However, reducing the latter increases the amplitude of the voltage ripple and switching at a faster rate increases ac losses, impacting efficiency. There are also opportunities for optimisation, e.g. for a given voltage ripple target, capacitance can be decreased provided the switching frequency is increased to avail of smaller energy-storage components.

A smaller inductance has lower DCR, improves transient response, and less output capacitance is required for a given transient performance. A larger inductance results in lower ripple current hence less capacitance is required for an equivalent output ripple.

If the inductor’s saturation current is exceeded, its inductance will drop, increasing the ripple current: a 30% drop in inductance will increase ripple current by > 40% as well as saturating the core. Shielded inductors reduce EMI and potential interference but are slightly more expensive because of increased manufacturing costs. Shielding tends to lower the saturation current which in turn lowers the maximum allowable rms current. Lsat also varies with temperature!

Source: EDN

Related Posts

Circuit Protection Devices

Flex Suppressor Explained and its Applications

24.3.2023
1
Aerospace & Defence

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023
27
Market & Supply Chain

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

23.3.2023
40

Upcoming Events

Mar 29
15:00 - 16:00 EEST

Supercapacitors vs. Batteries in Engine Starting

Mar 29
17:00 - 18:00 CEST

Practical LLC Transformer Design Methodology

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.