Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Premo Improves Heat Dissipation of High-Current DC Chokes

15.3.2023
Reading Time: 3 mins read
A A

PREMO has announced recent advances achieved regarding heat dissipation in the company’s 3DPower™ integrated magnetics components in combination with new techniques to produce iron powder magnetic core (FeSi6) to increase the impedance versus frequency and at the same time extend the saturation level of the core.

PREMO 3DPower is the first product to integrate two magnetics components that share the same core and feature two orthogonal magnetic fields at all points within the core, thus continuing improvement in high current chokes from thermal, insertion losses and saturation level point of view.

RelatedPosts

Premo Releases PLC Transformer for EV and Smart Grid Applications

Premo Unveils 50KW Off Board Charger Transformer with Embedded LLC Resonant Choke Achieving 99% Efficiency

Premo Extends Flyback Signal Transformer Offering for e-mobility Applications

This innovation is designed for on-board chargers (OBC) and dc-dc converters where filtering at the output is mandatory and the increasing of power delivered cause heating in the power inductive components and other critical failures such as magnetic core saturation.

In the graph above, the red shows inductance versus current when a Core Set FeSi6 is used (standard component) and the pink one is the same curve but with a complete iron powder core (FeSi6) covering flat wire winding.

This improvement is possible thanks to the distributed gap (FeSi6), isolated grain by grain, and a convenient compaction level of iron powder, while respecting the original size of output inductor.

On the other hand, there are also other kinds of output chokes where the power dissipation is really critical, considering copper heating (joule effect) and core heating (core losses) and consequently the temperature rise during operation (also Bsat decrease as temperature increase), especially at high temperature range, where the final temperature value can be close to curie temperature and make operation more unstable.

CoolMag™ makes extending the operation temperature range possible, increasing the reliability of power inductive components as well as of OBC and dc-dc converters. With every 10ºC of temperature decrease, the reliability or MTBF (mean time between failures) is multiplied by 2.

CoolMag is a thermally conductive compound able to fill any space between winding and core (and between core and heat-sink in case of use aluminum or magnesium dissipation).

The thermal conductivity of CoolMag can be between 1.5 and 1.8 W/mK, which is enough to reduce the temperature gradient in more than 40ºC.

One of the first observed impacts of using CoolMag is on the Inductance value versus temperature (after stabilization) as exemplified in the following graph.

The grey line is the inductance variation without CoolMag. The core reaches saturation in only 5-6 minutes. The orange curve shows the inductance variation with CoolMag, which remains within the nominal value throughout time. The temperature gradient with and without CoolMag is above 40ºC.

Related

Source: Premo

Recent Posts

Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

3.9.2025
17

Bourns Releases Automotive High Creepage and Clearance Transformer

1.9.2025
25

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

29.8.2025
27

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
13

Ripple Steering in Coupled Inductors: SEPIC Case

27.8.2025
20

TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

27.8.2025
18

SEPIC Converter with Coupled and Uncoupled Inductors

26.8.2025
38

Coupled Inductors in SEPIC versus Flyback Converters

26.8.2025
26

TDK Extends SMT Gate Drive Transformers to 1000 V

20.8.2025
22

Common Mistakes in Flyback Transformer Specs

15.8.2025
82

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version