• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Primary Fuse Protection Against Overvoltage Events

29.9.2017

Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

26.5.2022
Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

26.5.2022

Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

26.5.2022

Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

25.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

    Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

    Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

    Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

    Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

    A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology

    Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

    TDK Introduces Improved Performance PFC Capacitors

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

    Crusher at the Wodgina lithium mine in Western Australia. Image courtesy of Mineral Resources.

    Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

    Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

    Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

    A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology

    Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

    TDK Introduces Improved Performance PFC Capacitors

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Primary Fuse Protection Against Overvoltage Events

29.9.2017
Reading Time: 3 mins read
0 0
0
SHARES
877
VIEWS

source: Schurter application notes

Overvoltages occur during events such as switching operations, electrostatic discharges as well as lightning discharges. Be they direct or indirect, they are introduced by galvanic, inductive or capacitive means to electrical lines, with the potential to create devastating effects.

RelatedPosts

Euroquartz Releases SMD VCXO Low Jitter HF Oscillator

Restart of Wodgina Mine is a Good News for Tantalum and Lithium Supply Chain

Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

Pulse-shaped load currents are a common circuit occurrence and a typical factor for consideration when designing in primary fuses. Pulses can arise individually (Surge), or recurrently (e.g. timed circuits). With individual pulses, the I²t value of the fuse wire becomes quite important. This is because the higher the i²t value the greater the pulse tolerance; with pulse-shaped continuous currents, the calculation of the rms value is crucial, and generally the displacement of the rated current should be taken into account as a result of a possible increase in aging (diffusion).

Basic protection options

Two common circuit protection options are typically used to protect a circuit from overvoltages, a fuse for line protection together with an SPD (Surge Protection Device):

Circuit protection option P1: Fuse at the input of the circuit before the SPD.

Circuit protection option P2: Fuse at the input of the circuit behind the SPD.

Comparison of protection options:

· P1 represents a clean, good solution for the circuit from a technical standpoint. In particular, when using an appliance inlet with integrated fuse, this provides an elegant solution. However, greater attention has to be given to the selection of the fuse with regard to pulse tolerance, due to the fact that the SPD R1 installed downstream results in a high current load for the fuse. The result is a larger I²t value and a lower loss resistance, which increase the pulse tolerance.

· The P2 wiring is more universal. Only small loads arise in the fuse, F2, due to minimal surge pulses caused by the SPD (e.g. varistor) R2 installed upstream. In this case, the designer has much more leeway when selecting the fuse.

· Damages to the SPDs R1 and R2 do not necessarily trigger the fuse in either circuit variant.

· Recommendation: A combination of SPD with a temperature-controlled fuse is recommended for both circuit variants P1 and P2.

Aging caused by surge pulses

When selecting fuse performance characteristics and size, it should always be kept in mind that the behavior of every fuse is changed as a result of current impulses.

The fuse wire often has a coating, which diffuses increasingly deeper into the base material. This ongoing occurrence produces a new alloy, which in turn leads to in a displacement of the rated current and a continuous weakening of the fuse.

Measurement according to IEC 61000-4-5

The ability of a device to cope with these high-energy pulses is measured according to IEC 61000-4-5 with the pulse form 8/20μs for the short-circuit current and 1.2/50μs for the open-circuit voltage. Further details for testing the pulse tolerance [2].

Setup S1 without SPD / Setup S2 with SPD Setup S1 is a surge of 8/20μs directly to fuse F1. This test achieves the highest load for the fuse through the overvoltage test. Variant S2 is a realistic setup for some applications with an SPD in a row. The combination wave overvoltage generator creates a mixed signal of 1.2/50μs voltage and 8/20μs current pulse. The fuse current values shown in the SCHURTER datasheets are tested with the S1 setup and in Unify Tests with S1 and S2. If the fuses perform properly in the circuit, they must be checked individually. There are no stated tests for fuses behind the SPD – analog to protective circuit P2 – since the overvoltage does not represent a high load for the fuse.

Note: In some of the selected SCHURTER datasheets, the fuses were tested either in the P1 arrangement, without varistor (Setup S1) or the P1 arrangement with varistor (Setup S2).

According to the tests carried out, the above pulse tolerances can be proposed in accordance with the classification into the various standard classes. The characteristic values for the respective products are listed depending on the rated current.

Related Posts

Aerospace & Defence

Vishay Introduces Highest Energy Density Wet Tantalum Capacitors

26.5.2022
9
Capacitors

TDK Introduces Improved Performance PFC Capacitors

24.5.2022
25
Automotive

Stackpole Presents High Current Metal Shunt Resistors

19.5.2022
20

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.