• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Pulse Transformers are the Key to More Reliable Wired LANs

7.9.2018

Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

25.5.2022
A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology

Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

24.5.2022

TDK Introduces Improved Performance PFC Capacitors

24.5.2022

Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

23.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

    A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology

    Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

    TDK Introduces Improved Performance PFC Capacitors

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

    Panasonic Releases SMD Automotive Power Choke Coil

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

    A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology

    Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

    TDK Introduces Improved Performance PFC Capacitors

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

    Panasonic Releases SMD Automotive Power Choke Coil

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Pulse Transformers are the Key to More Reliable Wired LANs

7.9.2018
Reading Time: 4 mins read
0 0
0
SHARES
288
VIEWS

Source: Design News article

Joe Pulomena, director of  product marketing magnetics at EPCOS Inc., A TDK Group Company, explained benefits of often forgotten wired LANs benefits and pulse transformers benefits to its reliability in his Electronics & Test Automation article.

RelatedPosts

Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

TDK Introduces Improved Performance PFC Capacitors

Over the past decade, innovations in technology have helped wireless connections become more prevalent and more reliable, allowing for shared connections across devices and across greater distances. Wireless definitely has its place. However, wired LANs have many benefits that are critical to the design of most networks. They include speed, less electromagnetic interference (EMI), better security, more stability, and greater reliability. With new technological advances, the advantages of wired LANs are exponentially increasing.

 

1. Pictured is a LAN interface structure (100BASE-TX) with two pulse transformers and two common-mode chokes. (Image source: Product Marketing Magnetics, EPCOS Inc., A TDK Group Co.)

We often associate wireless with the Internet of Things (IoT), but it is also powered by wired LANs. For example, as more  servers, PCs, laptops, smart TVs, audio/visual devices, wireless access points, and other digital devices increase within a network, ensuring that a quality wired LAN is as close to the devices as possible will help safeguard the success of the network. Simply put, they rely on wired LAN connectivity to work well.

As a result, the number of servers and routers that serve ever more LAN ports will continue to grow—as will the multitude of consumer devices, such as notebook PCs, digital TVs, and other audiovisual devices, that will profit from the benefits of wired LAN connectivity.

The Key to Reliable Wired LANs

In order for wired LANs to work, pulse transformers send rectangular pulse transmissions. Pulse transformers are just like any other transformer; they contain both primary and secondary windings within a single core. The galvanic separation helps to protect sensitive ICs and networked devices within the network from DC bias. In addition, these cores prevent pulse waveform distortions across a wide frequency range. They also have low losses that transmit pulse waves, having many different frequencies resulting from the Fast Fourier Transform.

Newer LAN pulse transformers, which have been developed over the past several years, use high-performance ferrite materials within the core. In addition to improving performance, this helps the transformers have a longer operational lifespan.

2. A new type of common-mode choke is manufactured using advanced materials and auto-winding processes. This produces pulse transformer modules that are small enough to be integrated in standard RJ-45 LAN connectors. (Image source: Product Marketing Magnetics, EPCOS Inc., A TDK Group Co.)

 

LAN pulse transformers are typically used alongside a common-mode choke to form a pulse transformer module, which limits common mode noise entering or exiting the system. A pulse transformer module is often embedded within the RJ-45 connector to form a connector module. As a result, LAN pulse transformers must be extremely compact to be used in standard RJ-45 connectors (see figure 1).

Extremely Reliable Performance 

The demand for SMD LAN pulse transformers has increased significantly over the past several years, particularly as more devices become connected. However, traditional, manual production methods have been the norm. In order to speed manufacturing and improve the performance, quality, and miniaturization of pulse transformers, new manufacturing methods and pulse transformer designs needed to evolve.

To improve performance, pulse transformer modules utilize ring cores in both the common-mode choke and the transformer. Ring cores have a lower leakage flux due to their design, which minimizes air gaps that are normal characteristics of other core shapes. In addition, ring cores can be manufactured using an auto-winding process, preventing unevenness across the manufacturing process and within production batches—even for compact SMD designs.

These new manufacturing processes have helped to create entirely new types of SMD common-mode filters and LAN pulse transformers. Engineers found that using a coil carrier in SMD common-mode chokes—with a rectangular profile (DR core) that is automatically wound and bonded to an SP ferrite core or plate—would create the functional equivalent of a ring core. In order to accomplish this design, a special Ni-Zn ferrite material is used within these cores to create high magnetic permeability and saturation flux density throughout the temperature ranges that are typically found in LAN environments.

In addition, these types of SMD common-mode filters and LAN pulse transformers employ automated thermo-compression bonding for the connector electrodes and wires. In doing so, they provide higher quality components with uniform characteristics, a smaller footprint, and an overall lower cost of manufacturing.

While automating production, this advance in the manufacturing process improves the quality and stability of the core. It also enables pulse transformer modules to be miniaturized and made small enough to be integrated in standard RJ-45 LAN connectors in package size 3232 (as small as 3.2 mm × 3.2 mm × 2.9 mm). Using these techniques and manufacturing processes can reduce most 100BASE-TX pulse transformer modules by as much as 30 percent with a footprint that uses as little as 50 percent of the space as traditional LAN pulse transformers (see figure 2).

With these innovative manufacturing processes, pulse transformers may exhibit very low insertion loss of 1.5 dB or below over the range of 0.1 MHz to 100 MHz. And, with the advances in miniaturization, they may not exceed 2.5 dB over the same range (see figure 3).

3. Shown is the insertion loss of an SMD pulse transformer that is operating below 1 dB over a very broad frequency range. (Image source: Product Marketing Magnetics, EPCOS Inc., A TDK Group Co.)

 

Final Thoughts

New, low profile SMD pulse transformers and common-mode chokes offer all the paybacks of fully automated manufacturing processes—including uniformity, reliability, and miniaturization—for a wide range of temperature conditions. New materials, evaluation and simulation, and device and module technology will ensure the high quality, high performance of these devices. Such performance and reliability are crucial as more and more LAN ports are added to servers, routers, notebooks, TVs, and other connected equipment, including many applications in the automotive market. I’m excited to see what additional advances will be developed over the next several years, which will become an integral part of tomorrow’s high-speed, next-generation networks.

 

Related Posts

Aluminium Capacitors

Impact of Ripple Current on Aluminum Electrolytic Capacitors Lifetime

25.5.2022
1
A set of printed sample cubes showcasing the effects of laser power and print speed on the magnetic core structures. Image source: Tallinn University of Technology
Inductors

Researchers 3D Printed Superior Soft Magnetic Cores with Laser Additive Process

24.5.2022
12
Applications e-Blog

Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

23.5.2022
42

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.