• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication
Wind power generation with many large turbines, technology preserving the environment

Reducing O&M costs with ultracapacitors in emergency pitch-control systems

28.8.2018

4th PCNS Call for Abstracts Extended !

31.3.2023

KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

31.3.2023

Practical LLC Transformer Design Methodology

31.3.2023

Practical Measurement of Crystal Circuits

31.3.2023

March 2023 ECIA NA Electronic Components Sales Misses Expectations

31.3.2023

Würth Elektronik Presents New Series of DC-Link Film Capacitors

30.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    4th PCNS Call for Abstracts Extended !

    KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    March 2023 ECIA NA Electronic Components Sales Misses Expectations

    Würth Elektronik Presents New Series of DC-Link Film Capacitors

    Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

    Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Designing with High Voltage Resistors: 10 Top Tips for Success

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    4th PCNS Call for Abstracts Extended !

    KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    March 2023 ECIA NA Electronic Components Sales Misses Expectations

    Würth Elektronik Presents New Series of DC-Link Film Capacitors

    Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

    Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Designing with High Voltage Resistors: 10 Top Tips for Success

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Reducing O&M costs with ultracapacitors in emergency pitch-control systems

28.8.2018
Reading Time: 4 mins read
0 0
Wind power generation with many large turbines, technology preserving the environment

Wind power generation with many large turbines, technology preserving the environment

0
SHARES
83
VIEWS

Source: Windpower Engineering & Development article

By Michelle Froese | August 27, 2018 , Joshua Hitt, Senior Product Line Manager Maxwell Technologies

RelatedPosts

4th PCNS Call for Abstracts Extended !

KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

Practical LLC Transformer Design Methodology

Ultracapacitors are a reliable energy storage option that has resolved many of the typical pain points with battery-based systems.

While wind-farm operators work to optimize turbine performance and uptime, it’s inevitable that certain components will demand greater O&M attention. One aspect of turbine maintenance that typically causes multiple downtime hours per month is battery-based emergency pitch-control systems. Pitch control is an important turbine component used to operate and control the angle of blades to maximize wind generation. It also protects turbine blades from damage during excessive wind speeds or a grid power loss.

Replacing end-of-life or failed battery parts for emergency pitch-control backup systems in wind turbines is a time-consuming and costly process. It requires wind techs to climb up towers, and turbines to lose generating time. Ultracapacitor energy storage systems can eliminate scheduled pitch battery maintenance visits and significantly improve pitch system reliability.
This critical device is vital to successful turbine operation and fitted with energy storage backup power. However, site managers are too-often hit with unexpected maintenance costs relating to battery problems in pitch-control systems. These include degraded performance in cold and hot weather conditions, battery voltage faults, and up-tower climbs to replace failed battery systems.

How can site managers slash costly and time-consuming maintenance of the pitch system’s backup power? Ultracapacitors are a reliable energy storage option that has resolved many of the typical pain points with battery-based systems.

Chemistry uncovered

Ultracapacitors, also called supercapacitors, are high-powered energy storage devices that store charge electrostatically. In contrast, lead-acid batteries operate electrochemically, with inherent disadvantages due to the nature of their chemical process. As a result, ultracapacitors offer much greater efficiency and reliability in emergency pitch controls and require no scheduled maintenance for 10 years or longer. This contributes to greater turbine uptime.

For remote turbines in frigid, winter conditions or hot, summer temperatures, ultracapacitors’ electrostatic design makes for a wise choice. Here’s why: cold temperatures slow the rate of batteries’ chemical reactions, resulting in high internal resistance and inefficient charge acceptance. For example, a battery that provides 100% capacity at 80° F (27° C) will typically deliver only 50% capacity at 0° F (–18° C).

What’s more, each charge and discharge cycle requires electrochemical changes in the battery, causing the battery to lose capacity over time. Frigid conditions can render the battery ineffective. Extreme conditions may completely degrade battery performance, requiring operators to install multiple replacements.

Typically, pitch systems are fitted with environmental conditioning (heaters and fans) to keep batteries within their operating temperature range. However, wind farms still commonly experience premature battery failures from temperature extremes.

Battery-related pitch faults for turbine emergency pitch-control systems happen more than you might think. When consumer-owned electric cooperative, Iowa Lakes Electric Cooperative (ILEC), experienced problems with turbines at its wind farm, it switched to ultracapacitor-based energy storage.

The problem with pitch faults
Batteries are often the source of pitch faults as reported by SCADA systems, a turbine’s data-collection system. Battery voltage faults, one of several types of pitch faults, are specific to the turbine’s emergency pitch backup system. Voltage faults may occur during a battery load test, during battery charger failure, or when cold weather affects system performance and the battery fails to charge.

If the fault is unable to be repaired remotely, at least two wind technicians must climb up-tower to perform diagnostic inspections. Climbs are costly, complex, and offer an inherent safety risk. Repairs also result in turbine downtime and lost revenue.

Ultracapacitor retrofits
One way to overcome the limitations of lead-acid batteries in pitch-control systems is to replace the devices with ultracapacitor retrofit systems. Ultracapacitor storage modules provide a reliable and simplified emergency pitch-control backup system.

Ultracapacitor retrofits perform the same function as the battery system, with additional advantages.

  • Ultracapacitors can withstand a pitch system’s load with minor voltage drop, compared to battery systems. After ultracapacitors are installed in a turbine’s pitch-control system and fully charged, subsequent recharges occur in a few minutes. This is unlike batteries, which may take about 20 to 30 minutes to recharge. In addition, ultracapacitors provide quick, high power even after long stretches of non-use. This is a performance advantage over batteries, which often fail after stretches of idle time.
  • Ultracapacitors are available as “form-fit-functional” replacements for battery pitch systems, requiring zero modifications to the turbine hardware. Current ultracapacitor-based retrofit systems include an integrated charger and communication interface. This means the retrofit system can install in a timely manner. The ultracapacitor system check, voltage, and temperature are automatically reported to the turbine SCADA system in the same way the original battery system reports data, allowing for seamless plug-and-play functionality.
  • The ultracapacitor-based system significantly reduces system failure rates, pitch system downtime, and unscheduled O&M costs. Ultracapacitor-based energy storage reduces time spent maintaining and troubleshooting battery-based systems. Ultracapacitors require no scheduled maintenance over long periods of time and have much higher reliability, which means greater turbine uptime and project returns.
Maxwell Technologies’ ultracapacitor retrofit modules replace existing batteries for reliable and fail-safe pitch system performance.

Maxwell Technologies’ ultracapacitor retrofit modules replace existing batteries for reliable and fail-safe pitch system performance; image credit: Maxwell Technologies

To remain competitive with other power generation sources, wind operators must ensure that turbines operate at maximum capacity. While batteries are optimal for long-term energy storage applications, the fast, high-power requirement of the pitch control function is best served with ultracapacitor energy storage. Ultracapacitors improve chronic maintenance issues associated with battery-based systems and contribute to streamlined operations.

Related Posts

PCNS

4th PCNS Call for Abstracts Extended !

31.3.2023
115
Capacitors

KEMET SMD Tantalum Polymer Capacitors Meets Newly Released Military Performance Specification MIL-PRF-32700/1 and /2

31.3.2023
7
Inductors

Practical LLC Transformer Design Methodology

31.3.2023
24

Upcoming Events

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

Apr 5
11:00 - 12:00 CEST

Plugging – Filling – Tenting; WE PCB Webinar

Apr 6
April 6 @ 12:00 - April 7 @ 14:00 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Inductors and RF Chokes Basics

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.